ORACLE + Dyn

Network Automation at Oracle+Dyn

NANOG on the Road
Boston, 14 Sept 2017

Carlos Vicente

We’ve come a long way

e January 2014: 18 sites and a few hundred
devices with configurations manually crafted
for years

e Copy/paste errors

e Consistently inconsistent :)

e Too many people typing CLI commands

Some key accomplishments

e 0 sites redone in 2016 with 100% of configs
generated, tested and deployed using
automation

e Legacy sites partially maintained using the
same system

e CLI interaction now occasional and only by
NetEng team

History

e We knew Juniper had good support for NETCONF

e \We wanted to use templates

e Chef used for servers, but we wanted “push” instead of
“pull” model

e Considered writing our own code

e Ansible attractive due to its simplicity
o Includes support for templates (Jinja)
o Juniper had just written NETCONF modules for

Ansible

. . . E
Project “Kipper” is born y
=Ny
e Continuous integration approach to configuration
management
o Treat configurations as code (build, test, deploy)
e |everage existing tools

3

[

C\J4

‘.\6

A

o =) GitHub

netéonf

ANSIBLE

4 - dry-run

3 - PR Notify

e _\\“

i3 7-Merge W

i

& - Commit
new configs

Motify
A
5, 10 - Notify Results
(diffs, ermmors/OK)
2 - Pull Reguest +

y or
& -Approve/Merge 9- Deploy
Repo Copy x

MNotify
MOC

1- Make changes

% \

Admin

Organization

e Inventory

o All devices grouped by function, location, etc.
e Variables

o Applied to groups or individual nodes
e Roles

o Tie groups to templates and variables
o Common or by function (edge routers, firewalls, etc.)

Dynamic Inventory

Python script passed to Ansible that loads a list of
devices and creates groups:
o Based on naming convention
Site (US-NBN1, JP-TYO1, etc.)
Function (Edge, Spine, ToR, etc.)
Intersections of these
o Based on model (MX, EX, etc)
Also able to assign variables to hosts and groups

‘® 00
File Edit Options Buffers Tools Help

Other Variables (YAML) oncin e exanpl et

foo.net
group vars/ bar.net
192.0.2.1
all.yml 198.51.100.2
ams.yml
1ad.yml
edge.yml
12 My Location
host wvars/ 192.0.2.1

t: 192.8.2.1

edge-0l-ams.yml
vpn-0l-1ad.yml

: 198.51.100.2

192.0.2.1
198.51.106.2

Tabular Data

M

A_Name
edgel.us-xyz1
edgel.us-xyz1
edgel.us-xyz1
edgel.us-xyz1

Too much data to put in YML files

Take advantage of dynamic inventory, e.g.
Map all interconnections in a shared spreadsheet, convert to CSV and use

that to feed Ansible’s inventory

Use subnet prefixes and calculate IPs in the script
CSV file is version controlled

B c
A_Port Z Name
ge-1/0/0 edgel2.us-xyz1
ge-1/0/1 edgel2.us-xyz1
ael edgel2.us-xyz1
ael edgel2.us-xyz1

D
Z_Port
ge-1/0/0
ge-1/0/1
ael
ael

E

Type

F
A_Bundle

bundle member ael

bundle_member ael

wrf_lite_trunk
wrf_lite_trunk

nia
nia

G
Z_Bundle
ael
ael
nfa
nla

VLAN vi
nia n/a
nia n/a
1100 192.0.2.0/31
1200 192.0.2.128/31

vb
n/a
n/a
2001:db8:40:f008::/127
2001:dbB:40:f208::128M127

Templates

e Ansible uses Jinja2

o Configuration text with embedded code (Python)
m Conditionals, loops, etc.

e XML format

o Better support across versions of JunOS
o But also allows for advanced checks
m Easy to parse and run checks on it

Template example

>{{ host_basename }}</hc

<tk name={{ domain_name }}</d

= For' dummn in domain_search %}
< searche={{ domain }}</

{% endfor %}

{% if backup_router is defined %}
<address>{{ backup_router }}</address
<destination=0.0.0.0/8</d

{% endif %}

g hentications
<encrypted-password>{{ root_password_hash }}</encr
{% for name_server in name_servers %}
<hamea-5e ers
<name={{ name_server }}</
{% endfor %}

Test playbook

o Take each configuration file and perform a
dry-run using NETCONF

o aka commit-check in JunOS
o Gather diffs from each device
m Or report syntax errors
o Combine diffs to create a pretty Gist
o Send Gist URL to net admins via Slack

Deploy playbook

e Sends configs to all devices

o If there are changes, commits those
o If there are no changes, device is unaffected

e Notifies NOC

#* Kipper

"« @ilejeune is deploying configurations to network devices now. Scope: _ See #netdiff

Someone is making a change

O github @ ¢
[Network/kipper] Pull request submitted by shulshof
| #359 Add routes to support oob1 in-band access

@ jenkins
prb_kipper - #251 GitHub pull request #359 of commit
6af71f8ceed57e021d3dBfbd4b86bf60454623e3, no merge conflicts. (Open)
I prb_kipper - #251 Starting... after 1.2 sec and counting (Open)

aﬁ: Kipper
- Dry-run #251 results available here for your review

@ jenkins
I prb_kipper - #251 Success after 11 min (Open)

netcfg / netcfg_dry_run_103.diff secrer

Kipper dry-run #103 resuilts

[¢] netcfg dry run_103.diff

. - 33517 . net. diff

[edit groups]

: TRUNK_INTERNET { ... }
7! AE_INTERFACES { ... }
g ledit]

- apply-groups [ROUTING_INSTANCES RE_PROTECT V4 RE_PROTECT_V6 AE_INTERFACES];
+ apply-groups [ROUTING_INSTANCES AE_INTERFACES RE_PROTECT_V4 RE_PROTECT_V6E 1;
[edit interfaces ae@]

- mtu 1514;

I . 233517 . net.diff

[edit groups]
TRUNK_INTERNET { ... }

! AE_INTERFACES { ... }
20 [edit]
21 - apply-groups [ROUTING_INSTANCES RE_PROTECT_V4 RE_PROTECT_V6 AE_INTERFACES 1;
27+ apply-groups [ROUTING_INSTANCES AE_INTERFACES RE_PROTECT V4 RE_PROTECT V6 1:

[edit interfaces aed]

= mtu 1514;

Did we break anything?

PLAY [Reachablllty teStS] KA A A A A A A A A AR A A A A A A A A A AR A A A A A A A A A AR A A A A A A A A A A A A A A A, Ak kK

TASK [Plng test] R R b I b b b b d b b b b I b b b b A b b I b 4 b b I b b b b b b b I b A b b I b g b b I b S b b d b b b b g b b I b b b 4

ok: [torlO4a.us-xyzl] => (item={u'src ip': u'l98.168.145.195"', u'dst ip': u'l0.20.112.130",
u'src ri': u'PUBLIC', u'descr': u'From torlO8b.us-xyzl RI 1200 to torlO2a.us-zzzl RI
1300'})

ok: [torlO4b.us-xyzl] => (item={u'src ip': u'l0.20.49.131', u'dst ip': u'l10.20.112.130",
u'src ri': u'PRIVATE', u'descr': u'From torlO4b.us-xyzl RI 1300 to torlOZa.us-zzzl RI
1300'})

ok: [torlO8a.us-xyzl] => (item={u'src ip': u'l98.168.145.194', u'dst ip': u'l0.20.128.2",
u'src ri': u'PUBLIC', u'descr': u'From torlO8a.us-xyzl RI 1200 to torlO2a.hk-abcl RI
1300'})

ok: [torlO4a.us-xyzl] => (item={u'src ip': u'l0.20.49.130', u'dst ip': u'l0.20.128.2",
u'src ri': u'PRIVATE', u'descr': u'From torlO4a.us-xyzl RI 1300 to torlO2a.hk-abcl RI
1300'})

Nightly dry-runs

jenkins APP 8:00 PM ¥
I scheduled_dry_run - #447 Started by timer (Open)

I scheduled_dry_run - #447 Starting... after 0.71 sec and counting (Open)

= Kipper ~
N4 Dry-run #447 results available here for your review

jenkins /PP 8:13 PM
I scheduled_dry_run - #447 Back to normal after 12 min (Open)

Implementation on Legacy Sites

e Can't always reconfigure from scratch
o Fixing engine while car is running

e Started simple
o Covered the most common parts first:
m e.g. Authentication, NTP, DNS, SNMP, common
prefix lists, etc.
o Worked towards 100% coverage incrementally
m Slow process until everything is standardized

Implementation on new sites

Built a model site in the lab
Wrote templates to match working config
Modeled the addressing plan

Wrote code to generate the inputs
o CSV + YAML files

All configs generated and tested by
migration date
e Then: make deploy

Dynamic
Inventory

Network
Model

YAML
Files

Ansible/
Jinja2
Templates

Config XML

Operational changes

e Some operational changes do not merit the
CIl/CD process

o Need to be done very quickly and possibly off-hours
o Short-lived
o How to still avoid CLI?

e |dentified most common ones:
o Block or rate-limit abusive traffic
o Manipulate BGP announcements

Enter Flowspec

e |[ETF standard that allows using BGP to
transmit ACL specifications

e Actions include:
o Discarding packets
o Rate-limiting
o Redirecting traffic

e Also good support on JunOS

Project Flux

e Flowspec REST API
o Python/Flask/Redis + ExaBGP

High-level Overview

BGP/Flow T

spac

ExaBGP |+

RTR

Chathot
d >ﬁ
\—/
] Web

k! :'_"__'_'__":
Mo Auto-

| Mitigation | PIBKICHESS:

/

'l

! e

-~ Core site

Flowspec
API/ExaBGP

Replication

Flowspec
API/ExaBGP

Edge site e

ok
ok. i'm thinking we need to block that IP (s
it's skyrocketing, and the box is hitting FBS spikes.

e——

Sounds good. | don't think its doing anything good
ETTET————

okay. i'm blocking now.

Bysubesasns |7 -
next IR will be IR-3449

iR

yes

flowbot addflows -name ir-3449 -sites defral -src_ips nmnggp -dst_ips Uit
L]

flowbot
DRY RUN: Run with -commit to deploy flow into production

EDE

flow name: ir-3449
neighbors: defral

dst_ips:
L 5
.
-
g
WU e G 434 PV TR & QA =~

flowbot addflows -name ir-3449 -sites defral -src_ip i EIIED -dst_ips < RS 5
Ny -commit
flowbot
Flowspec APl Response: 201
Flow ir-3449 created

NETCONF API

e Another small Python-based REST API
e Uses Juniper's pyEZ library for SSH-based
NETCONF operations

e Only for discreet, safe operations
o Change BGP announcements
m Stop announcing anycast, drop provider, etc.
o Easy to add more functions

What about upgrades?

e \We recently extended the Ansible/Netconf
approach to upgrades
e Playbook for ToRs:

o Pre-upgrade config changes
o Uploads image, waits for reboot
o Reverts temp changes

e make upgrade - Can do many at once

Ancillary configurations

e \When your tool has 100% of the config data,

you can also generate:

o Monitoring configurations (availability, metrics)
o DNS, DHCP
o Etc.

e Alternative is to use a separate “discovery”
mechanism as inventory

Future plans

e (Create virtual labs on demand to test new

designs, or changes to existing designs
O make build test clean

e More functional testing using operational

state
o We are experimenting with jsnapy tool

Future plans

e \Work on a bootstrap/ZTP solution
o When deploying a site, tech needs to install minimal
JUNOS config prior to running “make install”:
m MgmtIP
m User authentication
m Enable SSH/Netconf

Questions?

Thank you

