
Network Automation at Oracle+Dyn

NANOG on the Road
Boston, 14 Sept 2017

Carlos Vicente

We’ve come a long way

● January 2014: 18 sites and a few hundred
devices with configurations manually crafted
for years

● Copy/paste errors
● Consistently inconsistent :)
● Too many people typing CLI commands

Some key accomplishments

● 6 sites redone in 2016 with 100% of configs
generated, tested and deployed using
automation

● Legacy sites partially maintained using the
same system

● CLI interaction now occasional and only by
NetEng team

History
● We knew Juniper had good support for NETCONF
● We wanted to use templates
● Chef used for servers, but we wanted “push” instead of

“pull” model
● Considered writing our own code
● Ansible attractive due to its simplicity

○ Includes support for templates (Jinja)
○ Juniper had just written NETCONF modules for

Ansible

Project “Kipper” is born
● Continuous integration approach to configuration

management
○ Treat configurations as code (build, test, deploy)

● Leverage existing tools

Organization

● Inventory
○ All devices grouped by function, location, etc.

● Variables
○ Applied to groups or individual nodes

● Roles
○ Tie groups to templates and variables
○ Common or by function (edge routers, firewalls, etc.)

Dynamic Inventory
● Python script passed to Ansible that loads a list of

devices and creates groups:
○ Based on naming convention

■ Site (US-NBN1, JP-TYO1, etc.)
■ Function (Edge, Spine, ToR, etc.)
■ Intersections of these

○ Based on model (MX, EX, etc)
● Also able to assign variables to hosts and groups

Other Variables (YAML)
group_vars/

all.yml
ams.yml
iad.yml
edge.yml

host_vars/

edge-01-ams.yml
vpn-01-iad.yml

Tabular Data

● Too much data to put in YML files

Take advantage of dynamic inventory, e.g.
1. Map all interconnections in a shared spreadsheet, convert to CSV and use

that to feed Ansible’s inventory
2. Use subnet prefixes and calculate IPs in the script
3. CSV file is version controlled

Templates

● Ansible uses Jinja2
○ Configuration text with embedded code (Python)

■ Conditionals, loops, etc.
● XML format

○ Better support across versions of JunOS
○ But also allows for advanced checks

■ Easy to parse and run checks on it

Template example

Test playbook

● Take each configuration file and perform a
dry-run using NETCONF
○ aka commit-check in JunOS
○ Gather diffs from each device

■ or report syntax errors
○ Combine diffs to create a pretty Gist
○ Send Gist URL to net admins via Slack

Deploy playbook

● Sends configs to all devices
○ If there are changes, commits those
○ If there are no changes, device is unaffected

● Notifies NOC

Someone is making a change

PLAY [Reachability tests] **

TASK [Ping test] ***
ok: [tor104a.us-xyz1] => (item={u'src_ip': u'198.168.145.195', u'dst_ip': u'10.20.112.130',
u'src_ri': u'PUBLIC', u'descr': u'From tor108b.us-xyz1 RI 1200 to tor102a.us-zzz1 RI
1300'})
ok: [tor104b.us-xyz1] => (item={u'src_ip': u'10.20.49.131', u'dst_ip': u'10.20.112.130',
u'src_ri': u'PRIVATE', u'descr': u'From tor104b.us-xyz1 RI 1300 to tor102a.us-zzz1 RI
1300'})
ok: [tor108a.us-xyz1] => (item={u'src_ip': u'198.168.145.194', u'dst_ip': u'10.20.128.2',
u'src_ri': u'PUBLIC', u'descr': u'From tor108a.us-xyz1 RI 1200 to tor102a.hk-abc1 RI
1300'})
ok: [tor104a.us-xyz1] => (item={u'src_ip': u'10.20.49.130', u'dst_ip': u'10.20.128.2',
u'src_ri': u'PRIVATE', u'descr': u'From tor104a.us-xyz1 RI 1300 to tor102a.hk-abc1 RI
1300'})

Did we break anything?

Nightly dry-runs

Implementation on Legacy Sites

● Can’t always reconfigure from scratch
○ Fixing engine while car is running

● Started simple
○ Covered the most common parts first:

■ e.g. Authentication, NTP, DNS, SNMP, common
prefix lists, etc.

○ Worked towards 100% coverage incrementally
■ Slow process until everything is standardized

Implementation on new sites

● Built a model site in the lab
● Wrote templates to match working config
● Modeled the addressing plan
● Wrote code to generate the inputs

○ CSV + YAML files
● All configs generated and tested by

migration date
● Then: make deploy

YAML
Files

Ansible/
Jinja2

Templates

Dynamic
Inventory

Config XMLNetwork
Model

IPAM

Operational changes

● Some operational changes do not merit the
CI/CD process
○ Need to be done very quickly and possibly off-hours
○ Short-lived
○ How to still avoid CLI?

● Identified most common ones:
○ Block or rate-limit abusive traffic
○ Manipulate BGP announcements

Enter Flowspec

● IETF standard that allows using BGP to
transmit ACL specifications

● Actions include:
○ Discarding packets
○ Rate-limiting
○ Redirecting traffic

● Also good support on JunOS

Project Flux

● Flowspec REST API
○ Python/Flask/Redis + ExaBGP

Core site
Flowspec

API/ExaBGP

r1 r2

Core site
Flowspec

API/ExaBGP

r1 r2

Edge site

r1 r2

Edge site

r1 r2

Edge site

r1 r2

Replication

NETCONF API

● Another small Python-based REST API
● Uses Juniper’s pyEZ library for SSH-based

NETCONF operations
● Only for discreet, safe operations

○ Change BGP announcements
■ Stop announcing anycast, drop provider, etc.

○ Easy to add more functions

What about upgrades?

● We recently extended the Ansible/Netconf
approach to upgrades

● Playbook for ToRs:
○ Pre-upgrade config changes
○ Uploads image, waits for reboot
○ Reverts temp changes

● make upgrade - Can do many at once

Ancillary configurations

● When your tool has 100% of the config data,
you can also generate:
○ Monitoring configurations (availability, metrics)
○ DNS, DHCP
○ Etc.

● Alternative is to use a separate “discovery”
mechanism as inventory

Future plans

● Create virtual labs on demand to test new
designs, or changes to existing designs
○ make build test clean

● More functional testing using operational
state
○ We are experimenting with jsnapy tool

Future plans

● Work on a bootstrap/ZTP solution
○ When deploying a site, tech needs to install minimal

JuNOS config prior to running “make install”:
■ Mgmt IP
■ User authentication
■ Enable SSH/Netconf

Questions?

Thank you

