
Network Automation

NANOG 71, San Jose, CA
October 2017

1

Past, present and future

Agenda

● Kirk Byers: first steps
● David Barroso: vendor-agnostic automation
● Jeremy Stretch: NetBox IPAM
● Jathan McCollum: NSoT IPAM
● Mircea Ulinic: event-driven automation

2

Kirk Byers - Bio

● Runs Python for Network Engineers and Ansible
Courses

● CCIE (emeritus) in Routing and Switching
● Creator of Netmiko Python library and member

of the NAPALM team.
● Runs the SF Network Automation Meetup

3
@kirkbyersktbyers

Engineers getting started in automation

4

How to fail at network automation?
1. Start with high-risk, difficult problems.
2. Assume an all-or-nothing mindset (everything has to be

automated or nothing can be automated).
3. Try to reinvent everything yourself.
4. Superficially copy code and patterns without comprehension.
5. Fail to learn good debugging processes.
6. [Hugely] over-engineering the solution.

Engineers getting started in automation

5

How to fail at network automation?
7. Fail to apply things that you learned on a small scale.
8. Being too busy to automate.
9. Fail to learn how to reuse your code [longer term].
10. Fail to use available developer tools: Git, linters, unit-testing,
CI-tools [longer term].

David Barroso - BIO

● Career
○ Network Systems Engineer @Fastly
○ Network Engineer @Spotify
○ Network Engineer @NTT
○ …

● NAPALM co-creator

6

@dbarrosopdarrosop

What is NAPALM?

● Network Automation and Programmability Abstraction Layer with
Multivendor support

● Python library
● Abstracts network operations:

○ configuration management
○ retrieving operational state

● Supports many vendors/operating systems:
○ Ios, ios-xe, ios-xr, junos, eos, fortios, etc…

● Integrates with ansible, salt, stackstorm, trigger, nsot
● Used by many large-scale networks like Fastly, Linx, Cloudflare,

DigitalOcean, Linode and many others which their legal teams don’t let
us mention.

7

Why NAPALM?

Focus on your network problems and how to solve them instead of in
the gritty details on how to achieve simple tasks like deploying a few
lines of configuration for each particular network operating system
out there.

8

Example (I)

9

Example (II)

10

Now with OpenConfig support!!! (I)

11

Parse native configuration and return and OpenConfig object

Now with OpenConfig support!!! (II)

12

Translate
OpenConfig
to native
configuration

Summary

● NAPALM helps you focus on the “what” rather than
on the “how”

● NAPALM brings OpenConfig support to those
vendors without support for it (and to those that
claim they have)

● NAPALM doesn’t pick sides; custom scripts, ansible,
salt, stackstorm, trigger, we like you all :)

13

Jeremy Stretch - Bio

● Sr. Network Developer at DigitalOcean
● Lead maintainer of the NetBox open source

IPAM/DCIM application
● Previously known for packetlife.net

14

@packetlifejeremystretch

● A database which contains information about your
network’s number spaces (IPs, VLANs, VRFs, etc.)

● Functions as an authoritative registry within your
organization

● Popular solutions include:
○ Commercial and open source applications
○ Applications developed in-house
○ Spreadsheets
○ Nothing (not a recommended approach)

● https://en.wikipedia.org/wiki/IP_address_management

15

What is IP Address Management (IPAM)?

https://en.wikipedia.org/wiki/IP_address_management

● In the beginning, there were spreadsheets
● Started re-evaluating our approach in early 2015
● Common open source limitations

○ Lack of IPv6 and/or VRF support
○ No DCIM functionality (rack elevations, interface connections, etc.)
○ Project no longer actively maintained

● Common commercial limitations
○ Licensed by breadth of IP space/number of objects ($$$!)
○ Paying for features we don’t need (DHCP, DNS)
○ No opportunity to expand to meet our needs

16

Why We Built Our Own IPAM Application

17

Our Solution: NetBox

● Desired vs. operational network state
○ Desired: What you want the network to look like
○ Operational: What it actually looks like
○ Very rarely (if ever) are these values the same

● When these states differ, the IPAM/DCIM database
functions as the authority to assert what is “correct”

Maintaining the integrity of
IPAM/DCIM data is crucial

18

IPAM as a Source of Truth

● Populating the database
○ CSV import (spreadsheet migration)
○ REST API
○ Command line shell
○ Direct database manipulation (use with caution)

● Avoid importing data directly from devices
○ Desired state != operational state
○ Don’t blindly grep from network devices
○ Ensure that all data is validated by a human before import

19

Populating Initial Data

20

A Cautionary Example

● Two switches with a 4x10GE LAG

● Stores information you need to effect automation
○ Device IPs, platform, NAPALM driver, etc.

● Render device configurations from template by
providing IPAM data as context
○ Interfaces, IP addresses, VLANs, etc.

● Validate operational state against desired state
○ Example: Compare LLDP data pulled via NAPALM against physical

connections defined in NetBox

21

IPAM as an Automation Enabler

22

● Leverage REST APIs to
integrate with existing
applications and
processes

● Example: POST to
“available IPs”
endpoint from
ticketing system to
provision new IPs

API Integration

23

Summary

● Pick an IPAM solution that meets your needs and fits
your budget

● Protect your source of truth
○ Always validate data before import

● Pull data from IPAM via its API to generate device
configs and validate operational state

Jathan McCollum - Bio

● Network Reliability Engineer at Dropbox
● Maintainer of Network Source of Truth (NSoT), an

API-first IPAM and network inventory app
● Maintainer of Trigger, a network automation

framework
● Previously in NetEng at AOL and Salesforce

24

@jathanismjathanism

● Source of truth
● Inventory
● IP Address Management (IPAM)
● Metadata
● API-first

25

What is NSoT?

● REST API is first-class citizen
● Everything uses the API
● Browsable API
● Client/CLI
● Bring your own UI

26

API-first?

● Ease of install/setup
● It should be easy to get your data in and out
● Feature parity & UX are top priorities
● Customization for any environment
● Loose-coupling between components

27

Design Principles

● Sites (namespaces)
● Attributes (and values)
● Networks (IPAM)
● Devices
● Interfaces
● Circuits
● Changes (event log)

28

Data Model

● Objects are minimal
● Attributes are where the power lies
● Searching w/ set queries (unions, intersections,

differences)
● Intended-state (model-driven) networking
● Discovered data
● Sites as namespaces

29

Use it how you want!

● NSoT (server)
○ nsot.readthedocs.io

● pyNSoT (client)
○ pynsot.readthedocs.io

● Support
○ Slack (#nsot in slack.networktocode.com)
○ IRC (#nsot on Freenode)

30

NSoT Resources

https://nsot.readthedocs.io/
https://pynsot.readthedocs.io/
http://networktocode.herokuapp.com/

31

Mircea Ulinic

● Network engineer at Cloudflare
● Prev research and teaching assistant at EPFL, Switzerland
● Member and maintainer at NAPALM Automation
● Integrated NAPALM in Salt
● OpenConfig representative
● https://mirceaulinic.net/

@mirceaulinicmirceaulinic

https://mirceaulinic.net/

Event-driven network automation (1)

32

Event-driven network automation (1)

33

False

Event-driven network automation (2)

34

● Several ways your network is trying to
communicate with you
○ SNMP traps
○ Syslog messages
○ Streaming telemetry

● Millions of messages

Event-driven network automation (3)

35

Streaming Telemetry

36

● Push notifications
○ vs. pull (SNMP)

● Structured data
○ Structured objects, using the YANG standards

■ OpenConfig
■ IETF

● Supported on very new operating systems
○ IOS-XR >= 6.1.1
○ Junos >= 15.1 (depending on the platform)

https://napalm-automation.net/yang-for-dummies/
http://www.openconfig.net/
https://github.com/YangModels/yang/tree/master/standard/ietf

Syslog messages

37

<99>Jul 13 22:53:14 re0.edge01.bjm01 xntpd[16015]: NTP Server 172.17.17.1 is Unreachable

<99>2647599: device3 RP/0/RSP0/CPU0:Aug 21 09:39:14.747 UTC: ntpd[262]: %IP-IP_NTP-5-SYNC_LOSS : Synchronization lost :

172.17.17.1 : The association was removed

● Junos

● IOS-XR

Syslog messages: napalm-logs (1)

38

● Listen for syslog messages
○ Directly from the network devices, via UDP or TCP
○ Other systems: Apache Kafka, ZeroMQ, etc.

● Publish encrypted messages
○ Structured documents, using the YANG standards

■ OpenConfig
■ IETF

○ Over various channels: ZeroMQ, Kafka, etc.

https://napalm-automation.net/napalm-logs-released/

https://napalm-automation.net/yang-for-dummies/
http://www.openconfig.net/
https://github.com/YangModels/yang/tree/master/standard/ietf
https://napalm-automation.net/napalm-logs-released/

Syslog messages: napalm-logs (2)

39

https://napalm-automation.net/napalm-logs-released/

napalm-logs

Network
device

Network
device

Network
device

Kafka

Client

Client

Client

Kafka

ZMQ

Client

https://napalm-automation.net/napalm-logs-released/

Syslog messages:
napalm-logs
structured objects

40

{

 "error": "NTP_SERVER_UNREACHABLE",

 "facility": 12,

 "host": "edge01.bjm01",

 "ip": "10.10.0.1",

 "os": "junos",

 "timestamp": 1499986394,

 "yang_message": {

 "system": {

 "ntp": {

 "servers": {

 "server": {

 "172.17.17.1": {

 "state": {

 "association-type": "SERVER",

 "stratum": 16

 }

 }

 }

 }

 }

 }

 },

 "yang_model": "openconfig-system"

}

Salt event system

41

Salt is a data driven automation framework. Each action (job) performed (manually from the CLI
or automatically by the system) is uniquely identified and has an identification tag:

$ sudo salt-run state.event pretty=True

salt/job/20170110130619367337/new {

 "_stamp": "2017-01-10T13:06:19.367929",

 "arg": [],

 "fun": "net.arp",

 "jid": "20170110130619367337",

 "minions": [

 "junos-router"

],

 "tgt": "junos-router",

 "tgt_type": "glob",

 "user": "mircea"

}

Tag

$ sudo salt junos-router net.arp

output omitted

https://docs.saltstack.com/en/develop/topics/event/events.html

Syslog messages: napalm-syslog Salt engine (1)

42

https://docs.saltstack.com/en/latest/ref/engines/all/salt.engines.napalm_syslog.html

engines:

 - napalm_syslog:

 transport: zmq

 address: 10.10.0.1

 port: 49017

 auth_address: 10.10.0.2

 auth_port: 49018

Imports messages from napalm-logs into the Salt event bus

/etc/salt/master

https://docs.saltstack.com/en/latest/ref/engines/all/salt.engines.napalm_syslog.html

Syslog messages:
Napalm-syslog
Salt engine (2)

43

Salt event bus:

napalm/syslog/junos/NTP_SERVER_UNREACHABLE/edge01.bjm01 {

 "error": "NTP_SERVER_UNREACHABLE",

 "facility": 12,

 "host": "edge01.bjm01",

 "ip": "10.10.0.1",

 "os": "junos",

 "timestamp": 1499986394,

 "yang_message": {

 "system": {

 "ntp": {

 "servers": {

 "server": {

 "172.17.17.1": {

 "state": {

 "association-type": "SERVER",

 "stratum": 16

 }

 }

 }

 }

 }

 }

 },

 "yang_model": "openconfig-system"

}

44

reactor:

 - 'napalm/syslog/*/NTP_SERVER_UNREACHABLE/*':

 - salt://reactor/exec_ntp_state.sls

/etc/salt/reactor/exec_ntp_state.sls

triggered NTP state:

 cmd.state.sls:

 - tgt: {{ data.host }}

 - arg:

 - ntp

/etc/salt/master

Matches the event tag

napalm/syslog/junos/NTP_SERVER_UNREACHABLE/edge01.bjm01

$ sudo salt edge01.bjm01 state.sls ntpCLI Equivalent:

Fully automated configuration changes

