

SRv6: Network as a Computer and Deployment use-cases

Gaurav Dawra, Technical Leader, Cisco Systems (gdawra@cisco.com) John Brzozowski, Fellow and Chief Architect, Comcast John Leddy, Network Engineering, Comcast Clarence Filsfil, Fellow, Cisco Systems (cfilsfil@cisco.com)

NANOG, San Jose, Oct 2017

Agenda

Segment Routing

- Source Routing
 - the topological and service (NFV) path is encoded in the packet header
- Scalability
 - the network fabric does not hold any per-flow state for TE or NFV
- Simplicity
 - automation: TILFA
 - protocol elimination: LDP, RSVP-TE, NSH...
- End-to-End
 - DC, Metro, WAN

Our commitment to Lead Operators

Strong

customer

adoption

WEB, SP, Enterprise

Standardizatio n **IETF**

De-facto SDN Architecture

Seamless deployment

Multi-vendor Consensus

Bloomberg

Bell

COMCAST

Proximus T-Mobile

Objectives of SRv6

IPv6 provides reachability

SRv6 for underlay

Simplification through protocol reduction SLA through automated FRR and TE De-facto SDN architecture

Scaling issue with k*N^2

SRv6 for underlay and overlay

Additional Protocol and State Additional Protocol just for tenant ID Simplification, FRR, TE, SDN

Multiplicity of protocols and states hinder network economics

SR for anything: Network as a Computer

Network instruction

Locator

Function

128-bit SRv6 SID

- Locator: routed to the node performing the function
- Function: any possible function either local to NPU or app in VM/Container
- Flexible bit-length selection

Network instruction

128-bit SRv6 SID

- Locator: routed to the node performing the function
- Function: any possible function either local to NPU or app in VM/Container
- Arguments: optional argument bits to be used only by that SID
- Flexible bit-length selection

Network Program in the Packet Header

Network Program

Network Program

Argument shared between functions

Group-Based Policy

SR Header

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1			
Next Header Hdr Ext Len Routing Type Segments Left			
Last Entry Flags Tag			
Segment List[0] (128 bits IPv6 address) +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+			
 Segment List[n] (128 bits IPv6 address) 			
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-			

SRv6 for anything

Optimized for HW processing e.g. Underlay & Tenant use-cases

Optimized for SW processing e.g. NFV, Container, Micro-Service

Lead Operators

- Standardization
- Multi-Vendor Consensus

SPRING Internet-Draft Intended status: Standards Track Expires: September 10, 2017

Cisco Systems, Inc. J. Leddy Comcast D. Voyer D. Bernier Bell Canada D. Steinberg Steinberg Consulting R. Raszuk Bloomberg LP S. Matsushima SoftBank Telecom D. Lebrun Universite catholique de Louvain B. Decraene Orange B. Peirens Proximus S. Salsano Universita di Roma "Tor Vergata" G. Naik Drexel University H. Elmalky Ericsson P. Jonnalagadda M. Sharif Barefoot Networks A. Ayyangar Arista S. Mynam Dell Force10 Networks A. Bashandy K. Raza D. Dukes F. Clad P. Camarillo, Ed. Cisco Systems, Inc. March 9, 2017

C. Fisfils

SRv6 Network Programming draft-filsfils-spring-srv6-network-programming-00

Copyright (c) 2017 IETF Trust and the persons identified as authors of the code. All rights reserved.

Inter-Domain Routing		Natural Hanking Cours	C Davidi Ed
Internet-Draft		Network working Group	S. Previdi, Ed.
Intended status: Standards Track	G. Dawra, Ed.	Internet-Draft	C. Filstils
Expires: September 13, 2017	C. Filsfils	Intended status: Standards Track	K. Raza
	D. Dukes	Expires: September 14, 2017	D. Dukes
	P. Brissette		Cisco Systems, Inc.
	P. Camarilo		J. Leddy
	Cisco Systems		B. Field
	J. Leddy		Comcast
	D Vover		D. Vover
	D. Bernier		D. Bernier
	Bell Canada		Bell Canada
	D. Steinberg		S Matsuchima
	Steinberg Consulting		S. Hacsdshima
	R. Raszuk		Joi Loung
	Bloomberg LP		I. Leung
	B. Decraene		Rogers Communications
	Orange		J. LINKOVA
	5. Matsushima SoftBank Talacam Japan		Google
	March 12 2017		E. Aries
	nar ch 12, 202/		Facebook
			T. Kosugi
BGP Signaling of IPv6-Segment-Routing-based VPN Networks			NTT
draft-dawra-bgp-srv6-vpn-00.txt			E. Vyncke
			Cisco Systems, Inc.
Network Working Group	A. Bashandy, Ed.		D. Lebrun
Internet Draft	C. Filsfils		Universite Catholique de Louvain
Intended status: Standard Track	L. Ginsberg		D. Steinberg
Expires: September 2017	Cisco Systems		Steinberg Consulting
	Bruno Decraene		R. Raszuk
	Orange		Bloomberg
	March 10, 2017		March 13, 2017
TS-TS Extensions to Support Segment Pout	ing over TRVE Datanlare	IPv6 Segment Rou	uting Header (SRH)
draft-bashandy-isis-sry6-sytensions-88		draft-ietf-6man-segm	ent-routing-header-06
and to basilality 1315-51 VO-EAC		and to accit onight segu	and i carrie neover oo

Copyright (c) 2017 IETF Trust and the persons identified as authors of the code. All rights reserved.

SRv6 for Next-generation Mobile

SPRING and DMM Internet-Draft Intended status: Standards Track Expires: January 18, 2018 S. Matsushima SoftBank C. Filsfils Cisco Systems, Inc. July 17, 2017

SRv6 for Mobile User-Plane draft-matsushima-spring-dmm-srv6-mobile-uplane-01

Copyright (c) 2017 IETF Trust and the persons identified as authors of the code. All rights reserved.

Use-Cases

SID allocation for illustration purpose

- For simplicity
- Node K advertises
 prefix AK::/64
- The function is encoded in the last 64 bits

Endpoint

- For simplicity
- Function 0 denotes the most basic function
- Shortest-path to the Node

A1::0 and then A5::0

Endpoint then xconnect to neighbor

- For simplicity
- AK::CJ denotes

Shortest-path to the Node K and then x-connect (function C) to the neighbor J

A1::0 and then A5::C7

TILFA

- 50msec Protection upon local link, node or SRLG failure
- Simple to operate and understand
 - automatically computed by the router's IGP process
 - 100% coverage across any topology
 - predictable (backup = post convergence)
- Optimum backup path
 - · leverages the post-convergence path, planned to carry the traffic
 - · avoid any intermediate flap via alternate path
- Incremental deployment
- Distributed and Automated Intelligence

Overlay

- Simple
 - Protocol elimination
- Automated
 - No tunnel to configure
- Efficient
 - SRv6 for everything
 - Reuse BGP/VPN signaling

Overlay with Underlay SLA

- SRv6 does not only eliminate unneeded overlay protocols
- SRv6 solves problems that these protocols cannot solve
- Also support IPv4 and Ethernet VPN's

Integrated NFV

- Stateless Service Chaining
 - NSH creates per-chain state in the fabric
 - SR does not
- App is SR aware or not
- App can work on IPv6 or IPv4 inner packets

T/64

3

Integrated NFV

 Integrated with Overlay

T/64

The VPP library

- FD.io project is a collection of several project/libraries to support flexible, programmable and composable services on generic hardware platforms
- VPP is the 'core' component of the project

Flexible, SLA-enabled and efficient content injection without multicast core

SD-WAN: Default versus BW versus Latency

- Lisbon (1) to Athens (7)
- Default
 - <16007>
- BW: Guaranteed 50Mbps
 - <16010, 16011, 16007>
 - BSID: 24002
- Low-Latency
 - <16009, 16007>
 - BSID: 24003

SD-WAN: App needs best-effort

- E1 encrypts the inner packet and encapsulate in outer packet to E2
- E1 does not push any BSID

SD-WAN: App needs guaranteed BW

- E1 encrypts the inner packet and encapsulate in outer packet to E2
- E1 pushes 24002
- The network provides the guaranteed BW service to App2

SD-WAN: App needs low-latency

- E1 encrypts the inner packet and encapsulate in outer packet to E2
- E1 pushes 24003
- The network provides the low-latency service to App3

Binding SID is crucial for Enterprise

- Identifier for a customized SLA per application per Enterprise
- Secured
- Per-BSID counters for usage-based billing
- Delegates the application recognition and policy decision to the Enterprise who knows better when an application needs a nondefault path and which non-default path is needed

Performance Monitoring – Enterprise-based

- Enterprise can easily monitors each individual service
- Simply sends the probes with the related BSID

Performance Monitoring – SP-based

- The SP can enable per-SR-policy perf monitoring
 - latency
 - loss
- These metrics can be leveraged by SDWAN controller and provided to the Enterprise
 - Simply reporting
 - Additional data to select which application to steer on which BSID

Current Mobile Network Example

- Well fragmented to RAN, EPC and SGi.
- Per-session tunnel creation and handling.
- Non-optimum data-path.

5G: SID Functions* for Mobile Data-Plane Roles

	Uplink	Downlink
Access Node	T.Insert, or T.Encaps	END.X/END.DX {6 4}
L2 Anchor Node	END or END.B6	END or END.B6
L3 Anchor Node	END.T/END.DT {6 4}	T.Insert, or T.Encaps

More use-cases

- 6CN: enhancing IP to search for Content
- 6LB: enhancing load-balancers
 - Better flow stickiness and load distribution
- Service Pipeline
- Micro-Services

Conclusion

Homework time!

- Go on www.segment-routing.net and check the latest demo
- Read the IETF draft: draft-filsfils-spring-srv6-networkprogramming
- Read the IETF BGP draft:draft-dawra-bgp-srv6-vpn-00
- Read the IETF ISIS draft:draft-bashandy-isis-srv6-extensions-00