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1.  Introduction 
•  Machine learning applications and algorithms 
•  Network operating system 
•  Network abstractions 

2.  Sensors 
•  OSNR 
•  Fiber polarization sensing 

3.  Algorithms 
•  QoT estimation optimization for margin reduction 

4.  Actions 
•  Error-aware rerouting - SLA to set error tolerance 

5.  Challenges 
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•  Ubiquitous cloud services will drive bandwidth and dynamism 
•  Computing resources instantiated in minutes 
•  Comparable flexibility presently not possible in IP/Optical networks 

•  Today: Largely quasi-statically re-configurable components 
•  Flexgrid ROADMs, flexible bitrate transponders, tunable lasers, FlexEthernet, … 

•  Dynamic networking requires sophisticated Network Operating System (OS) 
•  Manage and allocate resources for optimal network capacity, security and reliability  

•  Need to be able to physically sense and control the optical network 

•  Advanced machine learning algorithms on top of the Network OS 
•  Dynamic Networking = Sensors + Abstraction + Algorithms + Actuators 

•  Communications industry efforts: 
•  Optical Internetworking Forum (OIF): SDN for transport networks 

•     Open Daylight controller (ODL) 

•     Open Network OS (ONOS): Open-source NetOS from ON.Lab, Linux Foundation 

Introduction 
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Foundations of Machine Learning Applications 
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T. Mitchell, Machine Learning, McGraw Hill (1997) 
“A computer program is said to learn 

•  from experience E 
•  with respect to some class of tasks T 
•  and performance measure P 

if its performance at tasks in T, as measured by P, improves with experience E.” 

Algorithms 
Machine Learning 
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Artificial Neural Networks 
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https://www.youtube.com/watch?v=qv6UVOQ0F44 
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MarI/O: Artificial Neural Network 

http://www.benfrederickson.com/numerical-optimization/ 

W2 

W3 

WN 

W1 

x > T ? 

I1 

I2 

I3 

IN 

I1 

I2 

Ip 

…
 

W11 

Wp1 

W12 

Wp2 

W1q 

Wpq 

…
 

O1 

O2 

Oq 

…
 

Σ  >   

 >   Σ

Σ  >   

Inputs Outputs 

O 

x 
T 

O 



6 © Nokia 2016 

Dynamic and Flexible Networks 
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WDM Transmission Capacity and Flexible Optical Transponders 

Get the Most Capacity out of Your WDM System 
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NetOS: The Network Brain 

The network brain is a cognitive global network control plane  

Network state 
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NetUNIX NetOS Functions 
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•   Advanced algorithms on an vendor-independent, abstract network representation 
•  What information is needed? How many data points are needed? 
•  Joint IP/Optical network grooming and optimization - IP/Optical network topology is needed 
•  Optical margin reduction - optical network OSNR data is needed 
 

•   The Internet Engineering Task Force (IETF) 
•  YANG data modeling language to model configuration of network elements 

•   OpenROADM (AT&T, Ciena, Fujitsu, Nokia, SK Telecom…) 
•  Defines interoperability specifications for ROADMs, transponders, pluggable optics 
•  Includes YANG data models for devices, network, services 

•   OpenConfig  (Google, AT&T, Microsoft, BT, Facebook…) 
•  YANG data models for optical transport: terminal optics, wavelength router, optical amplifier 

•   OpenFlow 1.4 (Open Networking Foundation) 
•  Common southbound interface definition for multi-vendor network element control 

•   NetGraph - mathematically-rigorous, expresses multilayer network complexity 
•  Does not replace other efforts, adds explicit layering and mathematical rigor to network model 

Public 

Data Models, Network Abstraction 
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NetGraph Primitives 
Underlying Mathematical Model 
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NetGraph abstract network representation 
maps to network resources 
 

Implementation: Adaptation to Network Elements 
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1.  Introduction 
•  Machine learning  

•  Network operating system 

•  Network abstractions 

2.  Sensors 
•  OSNR 

•  Fiber polarization sensing 
3.  Algorithms 

•  QoT estimation optimization for margin reduction 
4.  Actions 

•  Error-aware rerouting - SLA to set error tolerance 

5.  Challenges 
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•  Single photodiode eye diagram machine learning analysis: 
•  J. Thrane, J. Wass, M. Piels, J. C. M. Diniz, R. Jones, and D. Zibar, “Machine learning techniques for optical performance monitoring from directly 

detected PDM-QAM signals,” Journal of Lightwave Technol., vol. 35, no. 4, 2017. 

OSNR Sensing with an Artificial Neural Network 

Public 

Artificial neural network used to estimate 
OSNR from eye diagram  
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Fiber as a Sensor 

Optical fiber network becomes a massively-distributed motion detector 

2017 Public 
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OSC for Polarization Sensing – Span Monitoring 
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Results Summary 
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J. E. Simsarian and P. J. Winzer, “Shake Before Break: Per-Span Fiber Sensing with In-Line Polarization Monitoring,” in Proc. OFC 2017, paper M2E.6, 2017.  
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F. Boitier, V. Lemaire, J. Pesic, L. Chavarría, P. Layec, S. Bigo, E. Dutisseuil, “Proactive fiber damage detection in real-time coherent receiver,” ECOC 2017. 

Coherent Transponder Polarization Sensing – Path Monitoring 

Public 

Machine Learning Event Classification 
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1.  Introduction 
•  Machine learning 

•  Network operating system 

•  Network abstractions 

2.  Sensors 
•  OSNR, BER, NGMI 

•  Fiber polarization sensing 
3.  Algorithms 

•  QoT estimation optimization for margin reduction 
4.  Actions 

•  Error-aware rerouting - SLA to set error tolerance 

5.  Challenges 
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Why and When do We Need to “Learn from Experience” 
(As opposed to “knowing what we are doing”) 

•  Good models of the underlying physics are generally best 
•  Subsystem: Chromatic dispersion compensation in a coherent DSP 
•  System: Predicting physical-layer performance through adequate models 
•  Network: Rule-based (x-layer) routing and wavelength assignment 

•  But: How good / comprehensive is the respective model ? 
•  Hybrid approach: physical model + parameter tuning with machine learning 

- A dB in system planning accuracy is as valuable as a dB in coding gain!  
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Optical System Margin Reduction 

Public 

E. Seve, J. Pesic, C. Delezoide and Y. Pointurier, “Learning process for reducing uncertainties on network parameters and design margins,” in Proc. OFC 2017, paper W4F.6. 
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1.  Introduction 
•  Machine learning 

•  Network operating system 

•  Network abstractions 

2.  Sensors 
•  OSNR, BER, NGMI 

•  Fiber polarization sensing 
3.  Algorithms 

•  QoT estimation optimization for margin reduction 
4.  Actions 

•  Error-aware rerouting - SLA to set error tolerance 

5.  Challenges 
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SDN Testbed at Bell Labs 
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•  Optical switching inside data center 
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Error-Aware Rerouting 
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•  Stability and reliability  
•  Event classification probability 

•  How much data is “enough” as a basis for machine learning? 
•  What data is needed at which layer of the network? (abstraction) 

•  Machine learning algorithms local to network element for sensor data 

•  Reliability and operational implications 
•  Human operator confirmation of network operations 

•  Business structures - IP and optical businesses 

•  What are operational barriers to more efficient and dynamic network operation? 

•  Outages and accountability – applications on top of NetOS 

Challenges and Discussion Points for Network Operators 

Public 2017 

*J. Thrane, J. Wass, M. Piels, J. C. M. Diniz, R. Jones, and D. Zibar, “Machine learning techniques for optical performance monitoring from directly detected PDM-QAM signals,” Journal of 
Lightwave Technol., vol. 35, no. 4, 2017. 

Classification of Modulation format 
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•  Cloud services as drivers of bandwidth and network dynamism 
•  Dynamic networks = Sensors + Abstraction + Algorithms + Actuators 
•  Machine learning algorithms to identify network events, reduce optical system margins, and optimize 

the network 
•  Built on programmable NetOS and flexible network infrastructure 

•  Different machine learning methods ranging from “black box” artificial neural networks, to event classification, to 
hybrid methods using a physical model of the system and machine learning 

•  NetUNIX prototype NetOS 
•  Improve sensing of the physical layer to detect impairment or possible disruption 

•  Abstract representations of the network layers with NetGraph 

•  Applications 
•  Impairment aware IP/optical re-routing 

•  Optical channel monitoring 

Conclusions 
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