RSVP-TE Pop&Go: Using a shared MPLS forwarding plane

Harish Sitaraman Juniper Networks
Vishnu Pavan Beeram Juniper Networks
Mazen Khaddam Cox Communications

NANOG 72, Atlanta
Agenda

- Motivation
- Summary of RSVP-TE features
- Coupling RSVP-TE and shared MPLS forwarding plane
- Pop&Go traffic engineering details
- Reference implementation
- Summary
TE + SR: The infrastructure

- Controller is required for bandwidth accounting
 - Build or Buy? Deployment model…
- Learning the topology, events, capabilities
 - BGP-LS, IGP, LSDB streaming,…
- Path computation; Programming state…
 - PCEP, (BGP) SR-TE, programmable APIs,…
- Telemetry for traffic (feedback loop)
 - Link utilization, path optimization, where is my traffic?
- Further considerations: Label stack push depth, Readable label stack depth, Entropy, MPLS MTU
- Loose hop routing and ECMP
- Operate in a multi-vendor network
RSVP-TE: Feature Richness

- RSVP-TE at scale with distributed path computation
- Bandwidth admission control
- Fast Reroute (FRR)
- Auto-bandwidth for periodic bandwidth adjustments
- LSP priorities / preemption
- TE++ (Container LSP)
- Multicast (P2MP)

Widely deployed in many cloud/service provider backbone networks
RSVP-TE: The tale of two states

- Control plane state
 - RSVP-TE scaling work makes handling signaling state more efficient (https://datatracker.ietf.org/doc/draft-ietf-teas-rsvp-te-scaling-rec/)

- Forwarding plane state
 - Number of label routes proportional to the number of transit LSPs
 - Transit data plane churn
 - Label can change at every hop during make-before-break
 - Limited by platforms with smaller L-FIB space
RSVP-TE + SR MPLS Data Plane: Benefits

 - Reduce transit data plane state at LSR
 - Shared *(static)* forwarding plane across LSPs
 - No data plane programming at transit during LSP setup or teardown
 - Self-contained solution to automatically overcome label stack push and read limitations
 - Continue to use existing RSVP-TE control plane features

- Range of RSVP-TE data plane:
 - Current data plane (higher FIB state, granular LSP statistics at transit) to…
 - SR MPLS data plane (least FIB state, loss of granular LSP statistics at transit)
Allocation of TE-link Labels

For each TE-link

- Allocate a label
- Install the label route in LFIB with a MPLS next-hop action of *pop and forward* over that RSVP interface to the neighbor
- Separate labels for protected and unprotected LSPs

Number of TE-link labels \(\sim\) Number of RSVP neighbors
Shared Forwarding Plane Across LSPs

- Ingress can signal a LSP requesting TE-link labels
- Ingress pushes the received labels (recorded in Resv RRO) in a label stack
- Multiple LSPs at an ingress can have same label stack and account for statistics
Delegating Label Push to Manage Stack Size

- Manage ingress label stack depth limit by offloading work to transit hop(s)

Labels in **RED** are **delegation** labels
Labels in **BLACK** are **TE-link** labels (for the next-hop neighbor)

Assumptions (for all nodes)
- Outbound Label Stack Depth Limit: 5
- Inbound Label Stack Read Limit: 8
- Number of application service labels at ingress: 2

Delegation hops R4 and R9 allocate a delegation label to represent a set of labels that will be pushed

Transit LSR does not receive more labels than it can read and use for traffic hashing
Automatic / Explicit Delegation

- **Automatic Delegation**
 - Ingress LER lets the downstream LSRs *automatically* pick suitable delegation hops during the initial signaling sequence.
 - Ingress *does not need to be aware* up front of the label stack push and read limits of each of the transit LSRs
 - Delegation hops are picked based on a per-hop signaled attribute called the Effective Transport Label-Stack Depth (ETLD)

- **Explicit Delegation**
 - Ingress LER explicitly delegates one or more specific transit LSRs to handle pushing labels for a certain number of downstream hops
 - Ingress *needs to be aware* of the label stack push and read limits of each of the transit LSRs prior to initiating the signaling sequence
Automated delegation hop selection

- ETLD (per-hop signaled attribute) in Path message:
 - Ingress populates ETLD with the maximum number of transport labels that it can potentially send to its downstream hop
 - Each successive hop decrements it by 1 (or appropriately based on limitations at that hop e.g. inbound read limit depth)
 - If a node is reached where the received ETLD is 1 (or no ETLD is received), then that node selects itself as delegation hop
 - Each delegation hop resets the ETLD to the maximum number of transport labels that it can potentially send to its downstream hop
 - When the Path message reaches the egress, all delegation hops are elected.

Pop&Go tunnel R1-R12: Delegation hops R4 and R9 automatically chosen during Path signaling sequence
Backwards Compatibility

- Works if LSRs provide regular swap labels

 Labels in **RED** are conventional RSVP **swap** labels
 Labels in **BLACK** are RSVP **TE-link** labels (for the *next-hop neighbor*)

- Ingress constructs label stack by parsing RRO and checking type of each label
Link Protection

- Facility bypass link protection works naturally

Labels in **RED** are TE-link labels for link-protected LSPs
Labels in **BLACK** are TE-link labels for unprotected LSPs

- Regular bypass at transit R4
- At LSR R4
 - Primary: Pop label **301** and forward via R4-R5 link
 - Backup: Pop label **301** and send via bypass to R5
Show output: Shared MPLS Forwarding Plane

```
user@D# set protocols mpls label-switched-path <name> pop-and-forward

user@D> show mpls lsp terse
...
Transit LSP: 64000 sessions
Total 64000 displayed, Up 64000, Down 0

user@D> show rsvp pop-and-forward [label|detail|extensive]
RSVP pop-and-forward: 1 shared labels
Label-in Hop-count Next-segment- label Protection Session-count
300 1 unprotected 64000

user@D> show route table mpls.0
mpls.0: 6 destinations, 6 routes (6 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both
0 [*MPLS/0] 00:07:56, metric 1
    Receive
1 [*MPLS/0] 00:07:56, metric 1
    Receive
2 [*MPLS/0] 00:07:56, metric 1
    Receive
13 [*MPLS/0] 00:07:56, metric 1
    Receive
300 [*RSVP/7/1] 00:03:35, metric 1
    > to 56.56.56.2 via ge-0/0/1.0, Pop
300(S=0) [*RSVP/7/1] 00:03:35, metric 1
    > to 56.56.56.2 via ge-0/0/1.0, Pop
```

Outputs are subject to change
Show output: Automatic Delegation

LSP Path: 7-hop path auto-delegating to the 3rd hop

Computed ERO (S [L] denotes strict [loose] hops): (CSPF metric: 70)
80.1.1.2 S 50.1.1.2 S 70.1.1.2 S 92.1.1.1 S 93.1.1.2 S 102.1.1.2 S 100.1.1.2 S

Received RRO (ProtectionFlag 1=Available 2=InUse 4=B/W 8=Node 10=SoftPreempt 20=Node-ID): (Labels: P=Pop D=Delegation)
3.3.3.3(flag=0x20) 80.1.1.2(Label=299776, P) 4.4.4.4(flag=0x20) 50.1.1.2(Label=299792, P)
5.5.5.5(flag=0x20) 70.1.1.2(Label=299856, D) 6.6.6.6(flag=0x20) 92.1.1.1(Label=299936, P)
7.7.7.7(flag=0x20) 93.1.1.2(Label=299872, P) 8.8.8.8(flag=0x20) 102.1.1.2(Label=299792, P)
9.9.9.9(flag=0x20) 100.1.1.2(Label=3)

RIB entry at ingress ...
9.9.9.9/32 (1 entry, 1 announced)
Label-switched-path t1
Label operation: Push 299856, Push 299792, Push 299776(top)

LFIB entry at transit (delegation hop) 5.5.5.5...
299856 (1 entry, 1 announced) TSI:KRT in-kernel 299856 /52
*RSPV Preference: 7/1
Next hop: 92.1.1.1 via ge-0/0/2.0, selected
Label operation: Swap 299792, Push 299872, Push 299936(top)
Summary

- Traffic Engineering is not a best effort activity
 - Planning, bandwidth and resource management, efficient link utilization
 - Predictable network behavior
- RSVP-TE scalability and usability has improved significantly over the years
- Pop&Go offers a pragmatic path to leverage the RSVP-TE control plane coupled with the minimal state of the shared forwarding plane
- Request for your support
References

- IETF MPLS-WG Draft

- Blog
Thank you

hsitaraman@juniper.net
vbeeram@juniper.net