DNS Survival Guide

Artyom Gavrichenkov <ag@qrator.net>

```
1983: (int32)*host_str;
```

```
1983: (int32)*host_str;
```

1997-2017:

- load balancing
- geobalancing
- ASN policies

```
1983: (int32)*host_str;
```

1997-2017:

- load balancing
- geobalancing
- ASN policies
- failover
- EDNS0

```
1983: (int32)*host_str;
```

1997-2017:

- load balancing
- geobalancing
- ASN policies
- failover
- EDNS0
- AAAA
- DNSSEC
- DANE, CAA, ...

Problem statement

How should an Internet company maintain its DNS infrastructure?

In-house?

• Outsourcing?

Problem statement

How should an Internet company maintain its DNS infrastructure?

- In-house
 - How to choose a software product?
- Outsourcing
 - How to choose a service provider?

1. How to choose a software product?

Naïve approach:

- a) It must be scalable
- b) It should support *features*

DNS benchmarks, 2013

- Knot (1.2.0 & 1.3.0-RC5)
- Yadifa (1.0.2)
- NSD3 (3.2.15)
- NSD4 (4.0.0b4)
- PowerDNS (3.3)
- TinyDNS (1.05)
- Unbound (1.4.16)
- Pdnsd (1.2.8)

- Server:

 Dual Xeon E5-2670
 32Gb RAM DDR3 1333Mhz
 Intel X520-DA2 10Gbit
- Generator: Single Xeon E5-2670 32Gb RAM DDR3 1333Mhz Intel X520-DA2 10Gbit
- Gentoo Linux 3.7.9

DNS benchmarks, 2013. Setup

- Vanilla DNS software!
- Purpose: purely academic (who runs better codebase)
- Authoritative: 300 zones
- Caching: Same amount of data in cache

DNS benchmarks, 2013.

https://www.slideshare.net/ximaera/dns-server-benchmarking

Queries, K/s

DNS benchmarks, 2013.

https://www.slideshare.net/ximaera/dns-server-benchmarking

Queries, K/s

DNS benchmarks, 2017

DNS benchmarks, 2017

Response Rate - Percentage

Without DNSSEC

Linux 4.10.0, Hosting (1M), Intel X710 10GbE, (2017-08-26)

Response Rate - Percentage

- With DNSSEC

This is not good.

The de-facto standard software doesn't scale well

This is not good.

The de-facto standard software doesn't scale well

- Yes, a balancer (Nginx) with a soccer field full of BIND servers will do.
- Definite overkill for a small task

This is not good.

The de-facto standard software doesn't scale well

What scales well causes concern in other areas

- Maintainability?
- Reliability?
- Support?

- Backward compatibility?
- Patches and security?
- Features?

Back to the requirements.

Naïve approach:

- a) It must be scalable how scalable?
- b) It should support *features* what features do we really want?


```
ximaera@nostromo:~$ sudo tcpdump -qni  tcp > /dev/null
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on any, link type LINUX_SLL (Linux cooked), capture size 65535 bytes
٧(
792 packets captured
794 packets received by filter
0 packets dropped by kernel
ximaera@nostromo:~$ sudo tcpdump -qni port 53 > /dev/null
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on any, linktype LINUX_SLL (Linux cooked), capture size 65535 bytes
٧(
104 packets captured
156 packets received by filter
0 packets dropped by kernel
ximaera@nostromo:~$
```

```
10:00:34.510826 IP
   (proto UDP (17), length 56)
   192.168.1.5.63097 > 8.8.8.8.53:
      9508+
      A? facebook.com.
      (30)
10:00:34.588632 IP
   (proto UDP (17), length 72)
   8.8.8.53 > 192.168.1.5.63097:
      9508 1/0/0
      facebook.com. A 31.13.72.36
      (45)
```


Apparently, not rocket science?

• Well, it's not - for the (int32)*host_str feature.

More to it?

Geobalancing

GeoIP2 City Database Demo

IP Addresses

8.8.8.8

Enter up to 25 IP addresses separated by spaces or commas. You can also test your own IP address.

Submit

GeoIP2 City Results

IP Address	Country Code		Approximate Coordinates*	_	ISP	Organization	Domain	Metr Cod
8.8.8.8	US	United States, North America	37.751, -97.822	1000	Google	Google		

■ 37.751, -97.822 ×

GeoIP2 City Database Demo

IP Addresses

8.8.8.8

Enter up to 25 IP addresses separated by spaces or commas. You can also test your own IP address.

Submit

Sorry, this is wrong!

GeoIP2 City Results

IP Address	Country Code		Approximate Coordinates*	_	ISP	Organization	Domain	Metr Cod
8.8.8.8	US	United States, North America	37.751, -97.822	1000	Google	Google		

Has its "owner location vs actual location" dilemma. Generally unreliable for anything except statistics.

- https://stackoverflow.com/questions/22986794/continuouslydecreasing-accuracy-of-maxmind-geolite-city
- https://www.techdirt.com/articles/20160413/12012834171/ho w-bad-are-geolocation-tools-really-really-bad.shtml
- https://splinternews.com/how-an-internet-mapping-glitch-turned-a-random-kansas-f-1793856052

Has its "owner location vs actual location" dilemma. Generally unreliable for anything except statistics.

- There's no geography on the Internet, just network topology.
- There are no countries, just autonomous systems and their relations.

ASN and prefix targeting: example

https://ns1.com/solutions/technical-solutions/filter-chain

- Filters are like little programs that run inline for every DNS query.
- They are attached directly to RFCcompliant DNS records

NETFENCE_ASN Restrict to answers where Autonomous System (AS) of requester IP matches AS list

NETFENCE_PREFIX Restrict to answers where requester IP matches prefix list

Contemporary DNS server requirements

Latency reduction: geobalancing prefix targeting

Dynamic configuration

```
08:35 < j***k> and also VERY FUNNY PEOPLE
08:35 < m***k> j***k likes us \o/
08:35 < s***k> we like j***k
08:36 < d***n> DNS DEPLOY
08:36 < j***v> What is this "DNS DEPLOY" thingy you guys keep screaming?
08:36 < d***n> j***v, when we deploy new dns content
08:36 < j***k> http://i.qkme.me/364h55.jpg
08:36 < j***v> Alearting eachother?
08:36 < d***n> yup
08:37 < j***v> d***n: Why?
08:37 < d***n> in case there's problems and I guess also as a locking mechanism
```

https://labs.spotify.com/2017/03/31/spotifys-lovehate-relationship-with-dns/

Dynamic configuration

DNS is not a static config anymore, this is essentially an API for configuration management systems and applications:

- Provisioning
- Stats
- Policy management

Enterprises will want this sooner or later.

Treating DNS not as an API is error-prone.

Contemporary DNS server requirements

- Latency reduction: geobalancing prefix targeting
- Dynamic configuration
- Failover

Failover, TTL 120s

Contemporary DNS server requirements

- Latency reduction: geobalancing prefix targeting
- Dynamic configuration
- Failover
- Vulnerability intelligence
- DDoS attacks

DNS DDoS

- Volumetric attacks: effective line rate challenges/handshake
- Water Torture and so on: query analysis, statistics and blacklists
- Anycast is necessary

Contemporary DNS server requirements

- Latency reduction: geobalancing prefix targeting
- Dynamic configuration
- Failover
- DDoS attacks
- DNSSEC, TLS, etc. More than 180 RFCs

Contemporary DNS server requirements

- Latency reduction: geobalancing prefix targeting
- Dynamic configuration
- Failover
- DDoS attacks
- DNSSEC, TLS, etc. More than 180 RFCs

Okay, now this is rocket science 😊

What about service providers?

Thousands out there!

- Dyn
- NS1
- Route 53
- Name.com
- Azure DNS
- Google Cloud DNS
- Cloudflare
- ... (sorry for not putting *your* favorite provider in the list)

What about service providers?

Thousands out there!

How to choose?

What about service providers?

Thousands out there!

- How to choose?
- Well, why?

SRTT: Smoothed Round Trip Time

- A mechanism intended to help to run a lot of nameservers simultaneously for a zone
- Deployed in most SOHO and enterprise networks
- NS1 study suggests up to 90% Internet traffic being serviced by SRTT-enabled resolvers

Scale

"Boxplot"

https://blog.serverfault.com/2017/01/09/surviving-the-next-dns-attack/

How to choose a service provider

- The more you have, the better
 - Up to 4-6 will be fine
- Easy to compare and replace the underperforming ones
- Helps also with maintenance windows and downtime issues
- AXFR doesn't support a lot of features
 - Prefer providers with nice API

Q&A