Fundamentals of DDoS Mitigation

Krassimir Tzvetanov krassi@fastly.com NANOG 72 Atlanta, GA

Introduction and overview

Overview

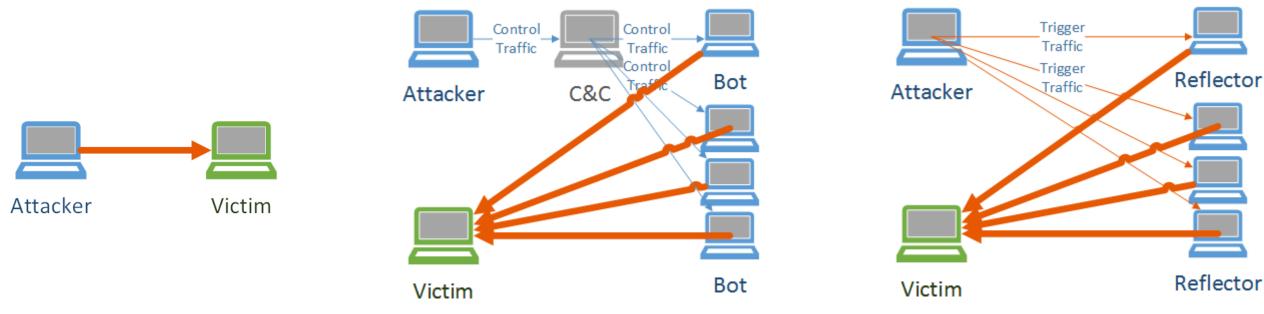
- Discuss what DDoS is, general concepts, etc.
- High level mitigation models
- Discuss reflection and amplification
- Attacks you need to be familiar with?
 - SYN Flood
 - Sloworis
 - DNS, NTP reflection
 - DNS cachebusting

3

What is DoS/DDoS?

What is Denial of Service?

- Discussion
- Resource exhaustion... which leads to lack of availability
- Consider:
 - How is it different from The Guardian pointing to somebody's web site?
 - How is that different from company's primary Internet connection going down?


What is Denial of Service?

- From security point of view?
 - Decreased availability
- From operations point of view?
 - An outage
- From business point of view?
 - Financial losses

6

DoS vs. DDoS

- One system is sending the traffic vs many systems are sending the traffic
- In the past it _usually_ meant difference in volume
- Over the past 3 years, due to reflective attacks, this has been changing rapidly.

The adversary?

Composition

- Wide range of attackers
 - Gamers on the rise!!! ③
 - Professional DDoS operators and booters/stressors
 - Some of the attacks have been attributed to nation states
 - Hacktivists though not recently

...and more

Motivation

Wide range of motivating factors as well

-Financial gain

- extortion (DD4BC/Armada Collective/copy cats)
- taking the competition offline during high-gain events (online betting, superbowl, etc).
- -Political statement
- -Divert attention (seen in cases with data exfiltration or financial fraud)
- -Disable firewalls
- -Immature behavior

Skill level

- Wide range of skills
 - Depending on the role in the underground community
 - Mostly segmented between operators and tool-smiths
 - Tool-smiths are not that sophisticated (at this point) and there is a large reuse of code and services
 - This leads to clear signatures for some of the tools
- Increasing complexity
 - DirtJumper
 - xnote.1
 - Mirai

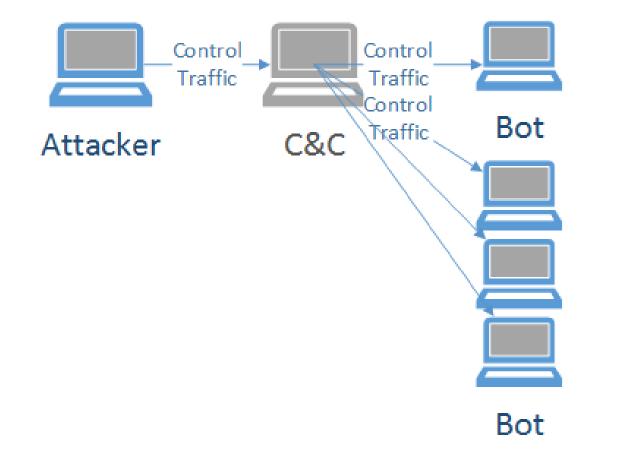
Additional factors

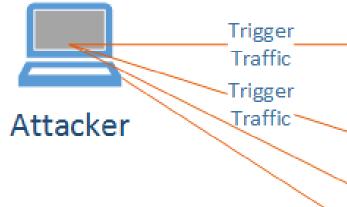
Additional factors

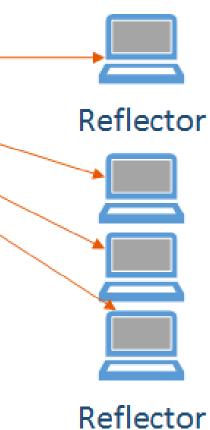
- Overall bandwidth
- Reflectors
- Embedded home and SOHO devices
- Content management systems
- Booters/Stressors (lower entry threshold)
- Accessible information

Home routers

- Embedded home and SOHO devices
 - Default username/password
 - Open DNS recursive resolvers
 - NetUSB bug
 - Network diagnostic tools
 - Some do not allow the user to turn off DNS
- XBOX and Sony attacks over Christmas (2014)
 - Krebs on security:
 - http://krebsonsecurity.com/2015/01/lizard-stresser-runs-on-hacked-home-routers/
 - Mirai

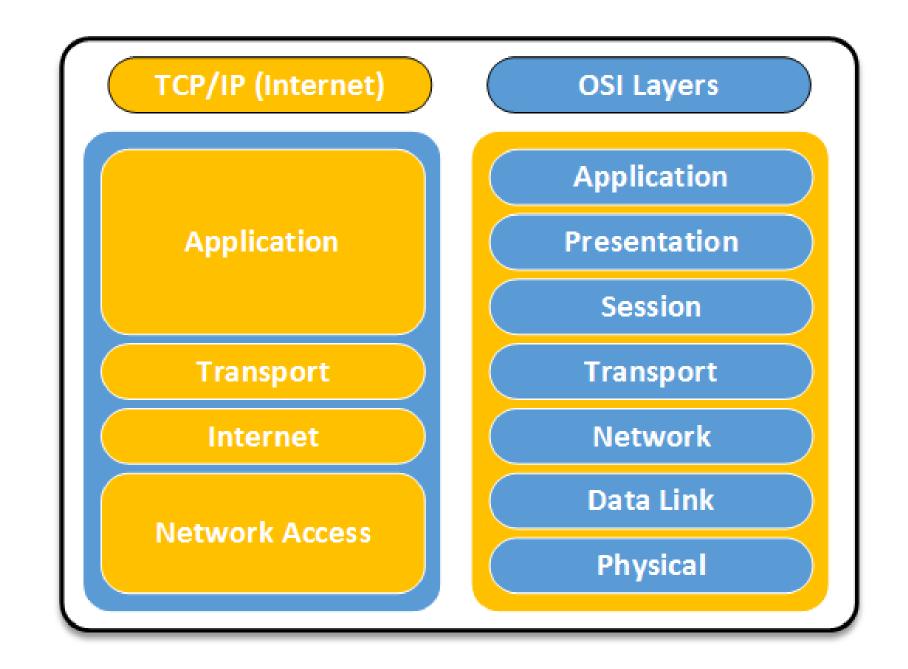

Compromised CMSes


- Most targeted Content Management Systems:
 - WordPress
 - Joomla
- Started in early 2013
- Started with a particular group of people abusing it
- Now it is an easy way to build a botnet and other groups abuse it as well

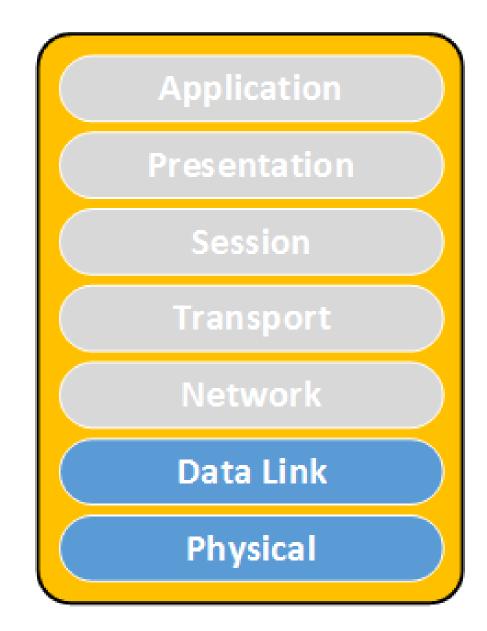

Booters/Stressors

- Inexpensive
- Tools are sold for cheap on the black market (forums)
- Range 5-10 Gbps and up to 40GBps
- Usually short duration
- Popular among gamers

Low cost thanks to reflection

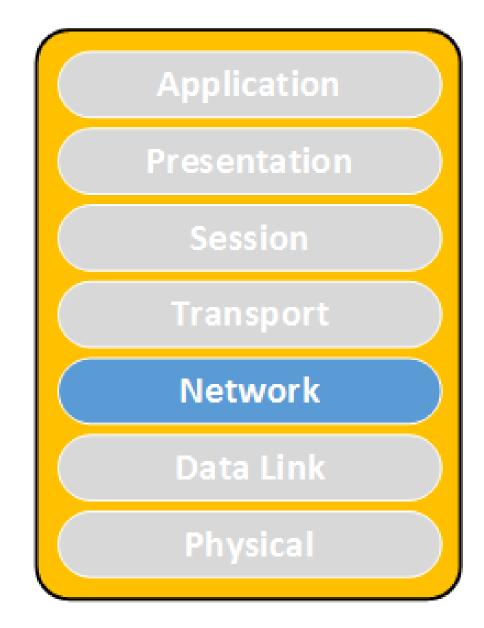


Attack surface


Network Layers – OSI vs Internet Model

19

Physical and Data-link Layers

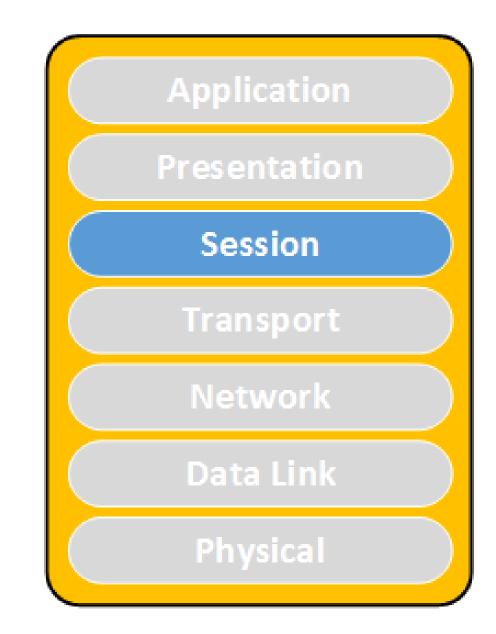

- Cut cables
- Jamming
- Power surge
- EMP
- MAC Spoofing
- MAC flood

20

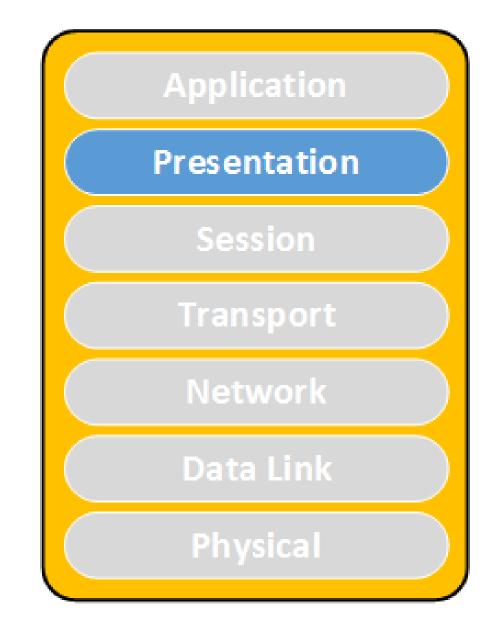
Network Layer

- Floods (ICMP)
- Teardrop (overlapping IP segments)

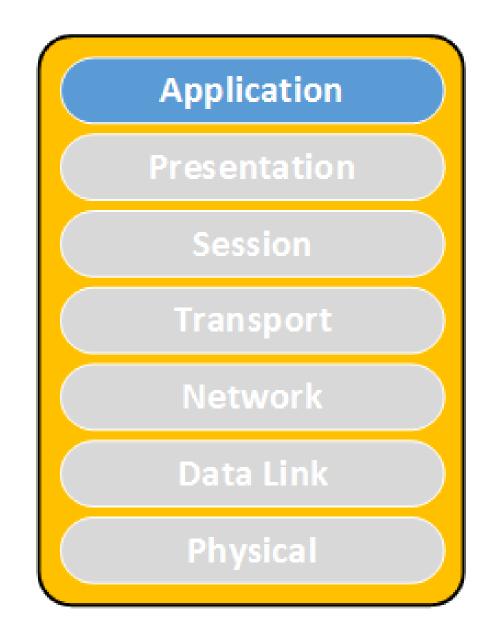
Transport Layer


- SYN Flood
- RST Flood
- FIN Flood
- You name it...
- Window size 0 (looks like Slowloris)
- Connect attack
- LAND (same IP as src/dst)

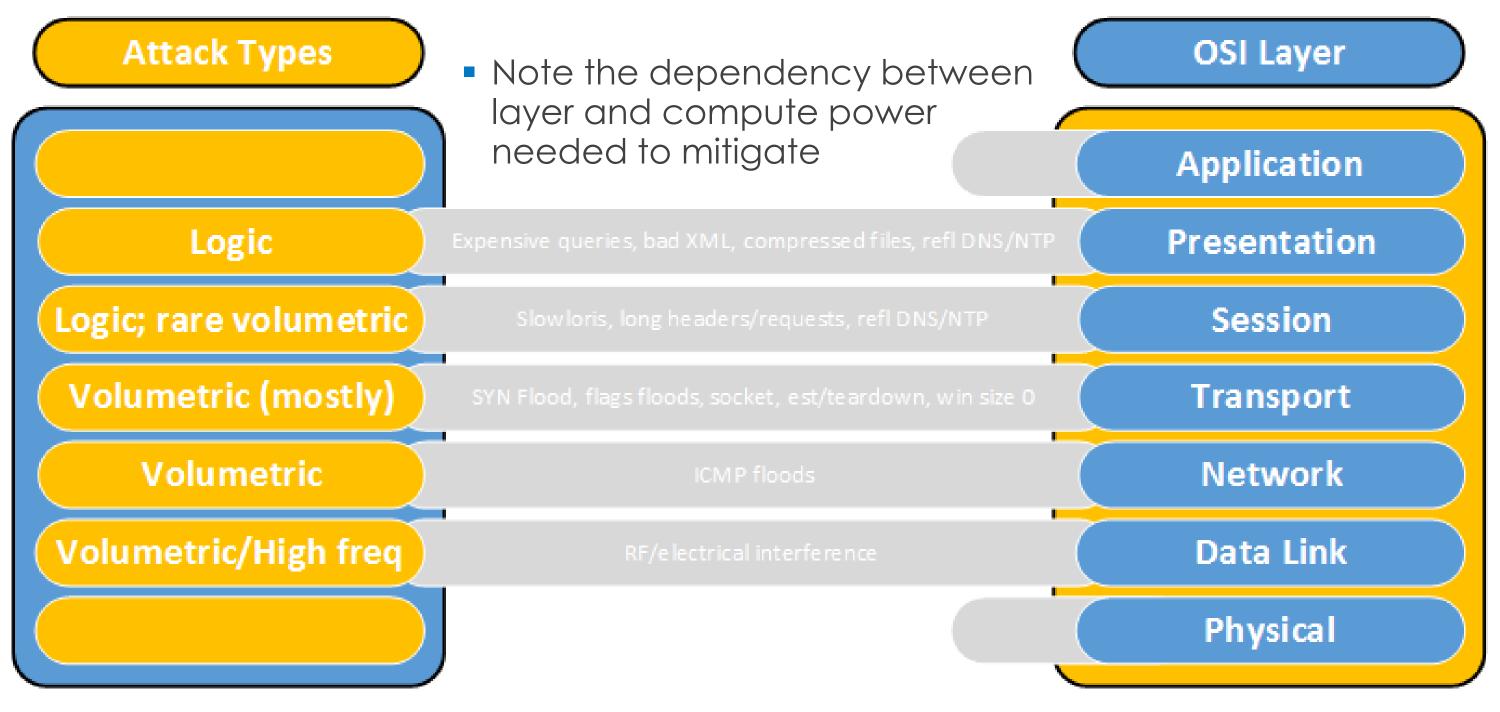
Application Presentation Session Transport Network Data Link Physical


Session Layer

- Slowloris
- Sending data to a port with no NL in it (long headers, long request lines)
- Send data to the server with no CR

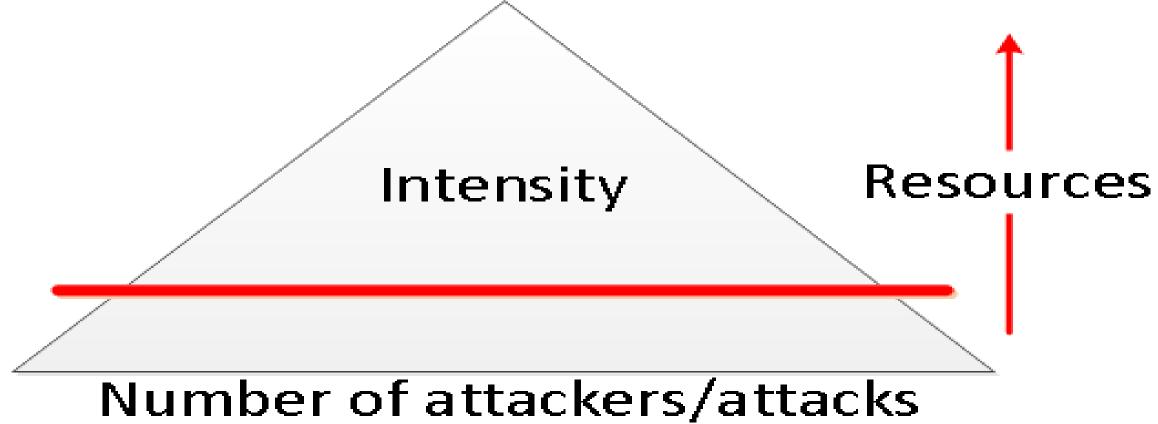

Presentation Layer

- Expensive queries (repeated many times)



Application Layer

- Depends on the application
- Black fax


Attack summary by layer

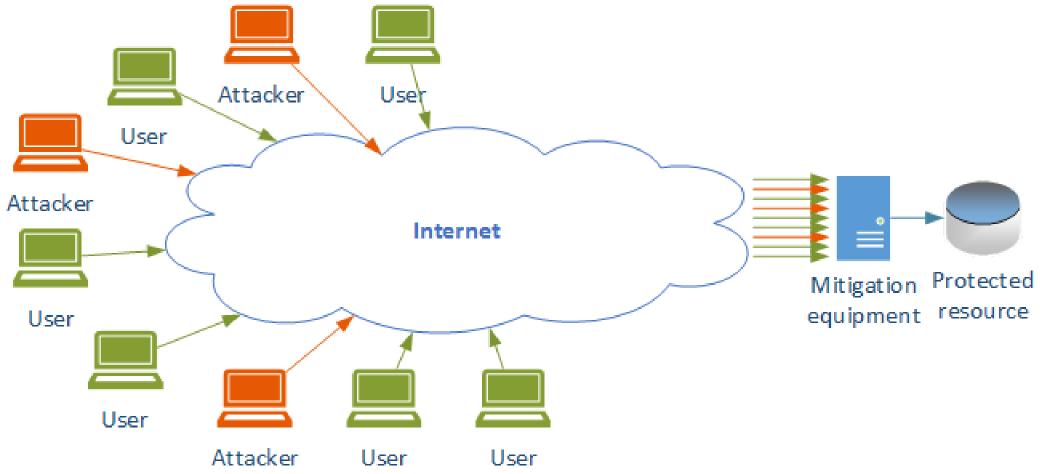
Questions?

Mitigation

Risk Pyramid

The cost of a minute?

- How much does a minute of outage cost to your business?
- Are there other costs associated with it? Reputation?
- Are you in a risk category?
- How much is executive management willing to spend to stay up?
- Are there reasons you need to mitigate on-site vs offsite? Latency?


30

Mitigation

Different approaches:

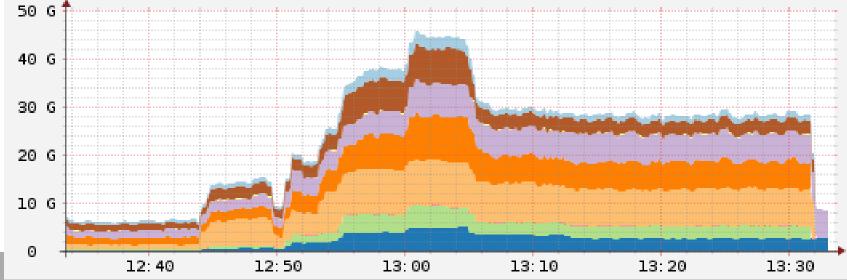
- Do it yourself (DIY)
- Outsource/service
- Hybrid

Do it Yourself (On Premise)

DIY: Considerations

- Network capacity: bandwidth
- Hardware capacity: packet rates, inspecting headers and content?
- One time cost (refresh every 3-4 years)
- Depending on attacks size can be in \$100,000s

DIY: Benefits


- Very low latency
- Can be application specific (non-http, gaming industry)
- Better control of the mitigation
- If inspecting TLS traffic keeps the keys in the company

DIY: Drawbacks

Need to procure ullet

> bandwidth - monthly recurring - expensive, adds up compute and network hardware qualified personnel – hard to find; expensive; hard to retain

How much bandwidth do you need? Double, triple, ten times? 50 G [±]

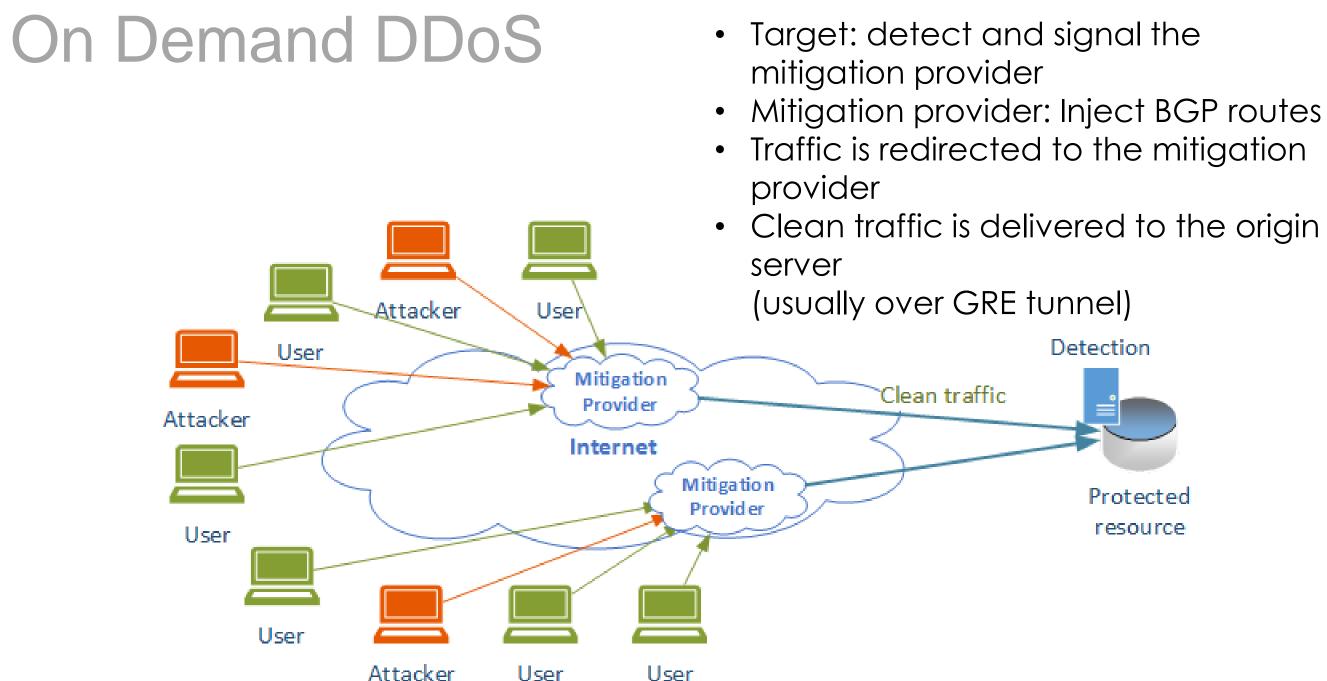
DIY: Bottom line

- traffic 10GBps = \$2,000/mo (NA)•
- colocation space \$400/mo •
- power depends on equipment and location ullet
- equipment min \$20,000 per 10GBps port
- personnel go figure... 🙂 •

...and you need them in many locations, with multiple per location

DIY: Conclusions

- At present DDoS attacks are at a very large scale but DIY is • not easy to scale for small and medium networks
- Leverages economy of scale requires a large infrastructure
- Infrastructure is very expensive to build and maintain •
- Requires significant amount of know-how •
- Unless hosting a very large site it's better left to the • professionals



External service

- DDoS mitigation service providers and CDNs
- Pricing:

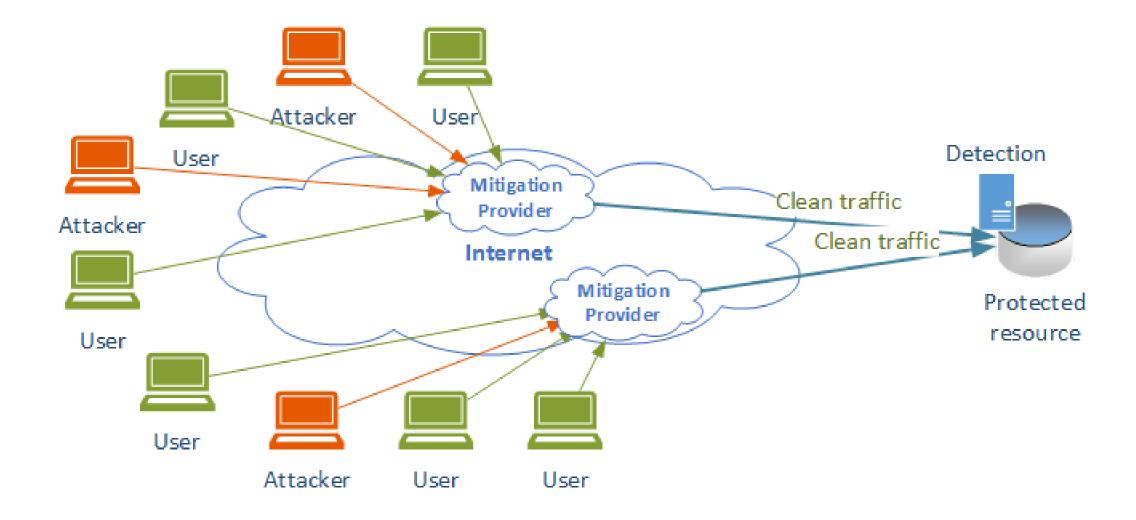
based on size of attack based on clean traffic

 Operating model: on demand always on

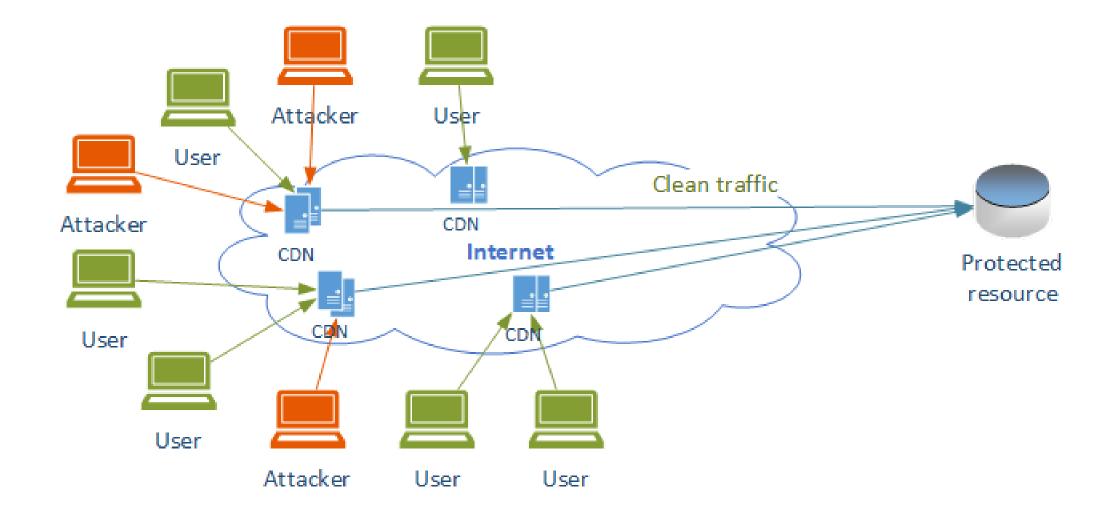
On Demand Mitigation - benefits

- Scales up very easily
- Can protect most applications from volumetric attacks
- Easier to deploy
- May leave the target vulnerable to bypass

On Demand Mitigation - drawbacks


- Takes time between the site being attacked until it switches to the service provider
- Potential outages
- Difficult to establish TLS
- May have increased latency
- Target may still be exposed
- Detection is not Application Aware
- GRE Tunnels create complexity

Always On Mitigation


- Permanently advertise address space
- Use shared delivery infrastructure (CDN) ullet
- Traffic is always flowing through the mitigation systems lacksquare
- Usually combined with services like CDN, which further ulletincreases website performance (even during peace time)

42

Always On DDoS Mitigation (advertise IP space)

Always On DDoS Mitigation (CDN)

Always On Mitigation - benefits

- Scales up very well during volumetric attacks
- Mitigation can be virtually instantaneous ulletNo moving parts during the attack
- Can protect most applications
- Once it's on there are no moving parts
- Very hard to bypass
- (proxy/caching) If deployed properly, it may • improve website performance
- Cost depends on the website traffic (not the attack)

Always On Mitigation - drawbacks

- Can increase latency
- Challenges around TLS
- Stale caches
- May be much more expensive

Hybrid

- Combination of DIY and service providers
- Helps customers manage their risk profile in a more flexible Way

Benefits:

- Provides protection against large scale events without the added service cost
- Allows for escalating response • postures and risk/finance management
- Overall most of the benefits of On Demand

Drawbacks:

- Increased complexity
- Requires skilled personnel ullet
- May have interoperability ulletissues

DDoS mitigation service providers

- It is an ongoing expense
- Depending on the business model it can be big or small
- Hides the complexities of managing the problem
- May introduce latencies, but also may accelerate content if used properly

DDoS mitigation svc providers – bottom line

Depends on the exact setup •

- in CDN cases may depend on the size of the size more

than the size of the attack

- varied: \$50/month – thousands...

DDoS mitigation service providers

Pros

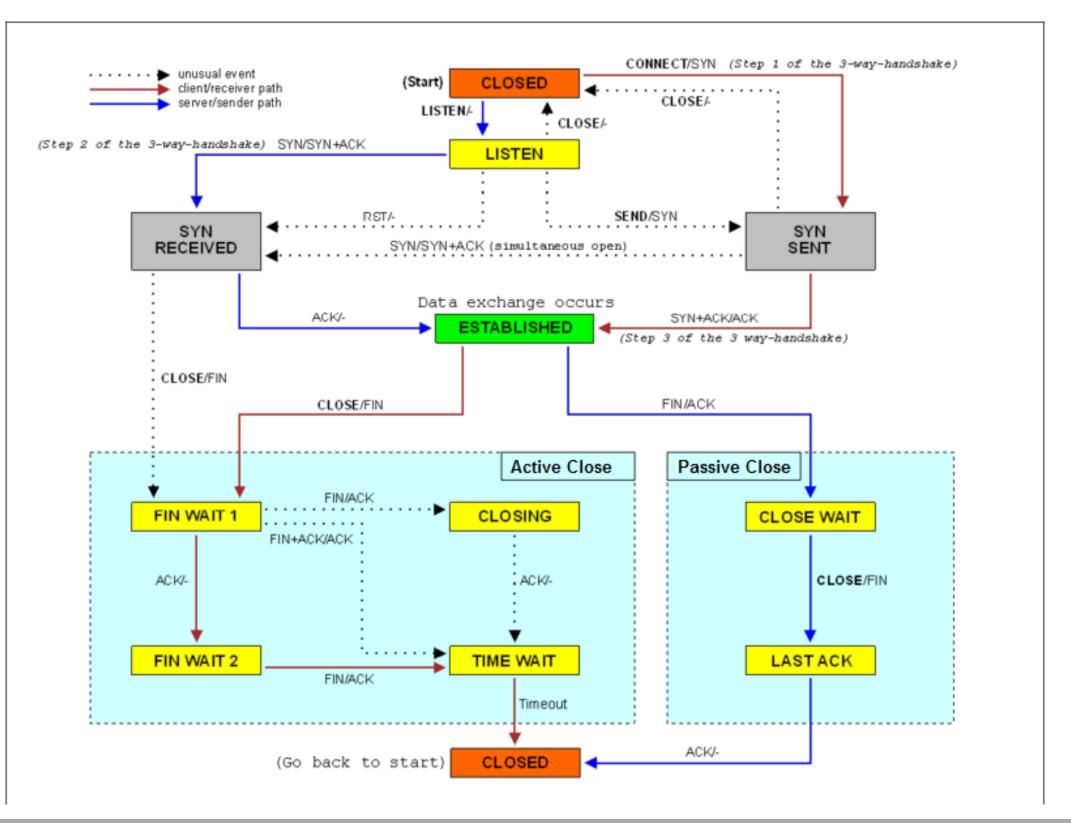
- Hides the complexities of managing the problem
- May accelerate content delivery
- May be much cheaper, especially as attack sizes grow but are not common
- Cost: much, much lower than DIY

Cons

- May not be applicable to all applications - gaming
- May increase latency
- May end up expensive
- Third party sees the users (and maybe the content) privacy, security
- Issues with stale cache

Questions?

Sockets Overview

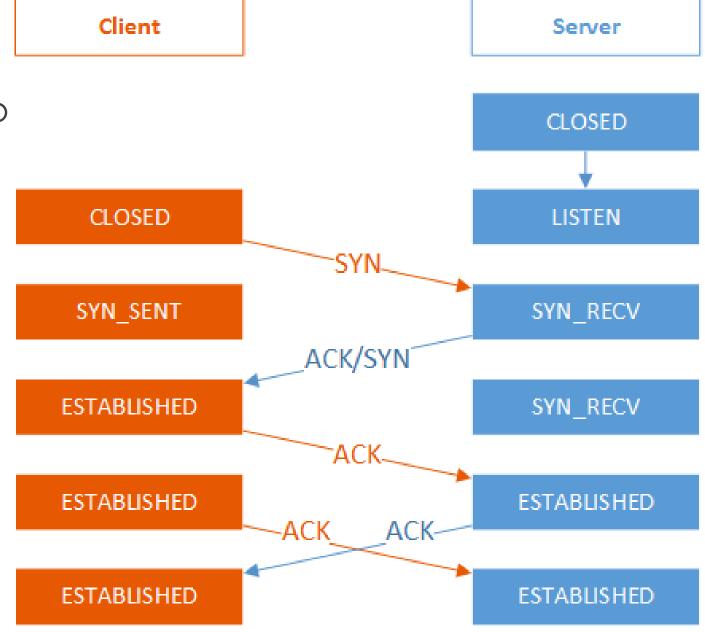

Sockets

- Socket is an abstraction allowing an application to bind to a transport layer address (aka network port)
- It is described by a state machine
- Throughout its life time it goes through a number of states

Socket States

- Here are some of the socket states of importance:
 - CLOSED start state
 - LISTEN waiting for a connection request
 - SYN_SENT initiated a connection
 - SYN_RECV received request still negotiating
 - ESTABLISHED connection working OK
 - CLOSE_WAIT waiting for the application to wrap up
 - FIN-WAIT1/2, CLOSING, LAST_ACK one side closed the connection
 - TIME-WAIT waiting for 2 x MSL

Socket State Diagram

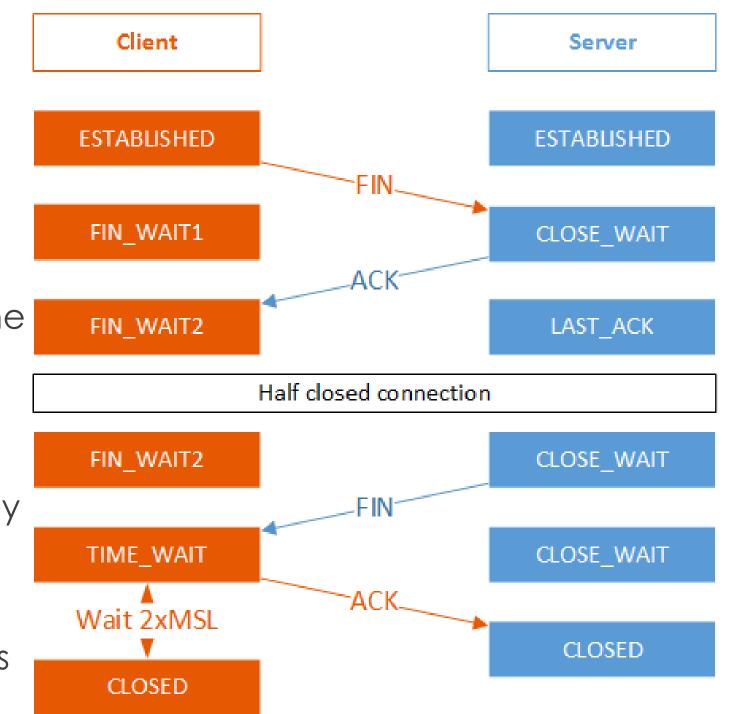


Source: Wikipedia

Opening a TCP connection

Let's review the sequence for opening a connection

- Server side opens a port by changing to LISTEN state
- Client sends a SYN packet and changes state to SYN SENT
- Server responds with SYN/ACK and changes state to SYN_RECV. For the client this is ESTABLISHED connection
- Client has to ACK and this completes the handshake for the server
- Packet exchange continues; both parties are in ESTABLISHED state



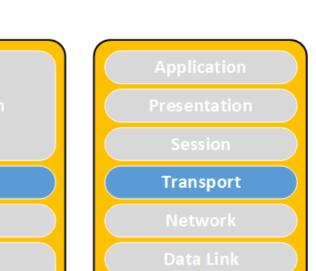
Closing a TCP connection

Sequence for closing a connection

- Both parties are in ESTABLISHED state
- One side initiates closing by sending a FIN packet and changes state to FIN_WAIT1; this changes the other side to CLOSE_WAIT
- It responds with ACK and this closes one side of the connection
- We are observing a half closed connection
- The other side closes the connection by sending FIN
- And the first side ACKs
- The first side goes into a wait for 2 times the MSL time (by default 60 seconds)

Use of netstat for troubleshooting

[root@knight ghost]# netstat -nap | grep 12345 0 0.0.0.0:12345 0.0.0.:* 2903/nc tcp 0 LISTEN [root@knight ghost]# netstat -nap | grep 12345 0 127.0.0.1:12345 tcp ESTABLISHED 2903/nc 127.0.0.1:49188 0 [root@knight ghost]# netstat -nap | grep 12345 0 127.0.0.1:49188 tcp 127.0.0.1:12345 TIME_WAIT -0 [root@knight ghost]# netstat -nap | grep 12345 [root@knight ghost]#


Attack types and terminology

SYN Flood

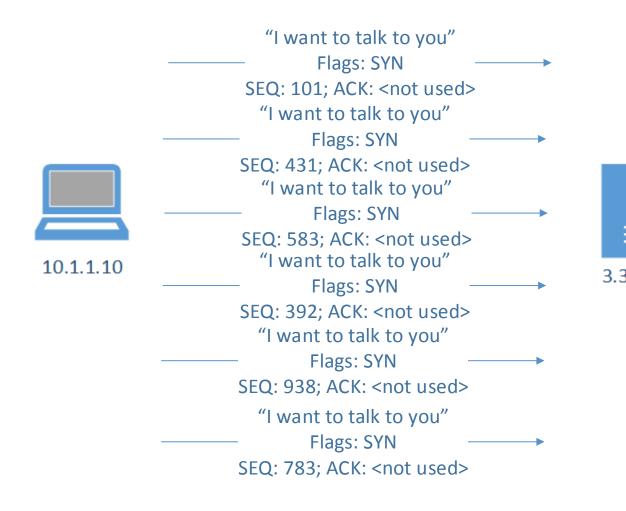
Transport

Internet

Network Acc

What is a SYN flood?

What is a 3-way handshake?



101

SYN flood

- Exploits the limited slots for pending connections
- Overloads them

SYN flood through the eyes of netstat

netstat –anp

Active Internet connections (servers and established)									
Proto	Recv	-Q Send-Q Local Add	dress Foreig	n Address	State	PID/Progr			
tcp	0	0 0.0.0.0:111	0.0.0.:*	LISTEN	1339/rpcbinc	1			
tcp	0	0 0.0.0.0:33586	0.0.0.:*	LISTEN	1395/rpc.stc	atd			
tcp	0	0 192.168.122.1:53	0.0.0.:*	LISTEN	1962/dnsn	nasq			
tcp	0	0 127.0.0.1:631	0.0.0.:*	LISTEN	1586/cupsd				
tcp	0	0 127.0.0.1:25	0.0.0:*	LISTEN	2703/sendm	ail: acce			
tcp	0	0 127.0.0.1:25	127.0.0.1:49718	SYN	_RECV -				
tcp	0	0 127.0.0.1:25	127.0.0.1:49717	SYN	_RECV -				
tcp	0	0 127.0.0.1:25	127.0.0.1:49722	SYN	_RECV -				
tcp	0	0 127.0.0.1:25	127.0.0.1:49720	SYN	_RECV -				
tcp	0	0 127.0.0.1:25	127.0.0.1:49719	SYN	_RECV -				
tcp	0	0 127.0.0.1:25	127.0.0.1:49721	SYN	_RECV -				
tcp	0	0 127.0.0.1:25	127.0.0.1:49716	SYN	_RECV -				

gram name

SYN on the wire

42 20.257541000 52.130.150.254 43 20.257563000 78.94.151.254 44 20.257574000 120.165.150.254 ▶ Frame 42: 56 bytes on wire (448 bit ▶ Linux cooked capture ▼ Internet Protocol Version 4, Src: 5 Version: 4	s), 56 bytes captured			 Attacke Rando addres
<pre>Header length: 20 bytes Differentiated Services Field: 0x0 Total Length: 40 Identification: 0xd701 (55041) Flags: 0x00 Fragment offset: 0 Time to live: 255 Protocol: TCP (6)</pre>	00 (DSCP 0x00: Default;	ECN: 0x00: Not	-ECT (Not ECN-Capable Trans	 Target – 127.0.0
Header checksum: 0x9a4c [validation Source: 52.130.150.254 (52.130.150) Destination: 127.0.0.1 (127.0.0.1) [Source GeoIP: Unknown] [Destination GeoIP: Unknown]	0.254)	st Port: http (80). Seg: 0. Len: 0	 Pay attended the SYN
Source port: 46036 (46036) Destination port: http (80) [Stream index: 35] Sequence number: 0 (relative se Header length: 20 bytes ▶Flags: 0x002 (SYN) Window size value: 65535 [Calculated window size: 65535] ▶Checksum: 0xb9c2 [validation disab	equence number)			

ker Idom IP dress/port

0.0.1:80

ttention to 'N flag!

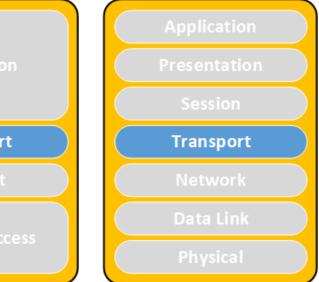
SYN flood mitigation

- Technology
 - SYN Cookies
 - Whitelists

What is a SYN cookie?

- Hiding information in ISN (initial sequence number)
- SYN Cookie:

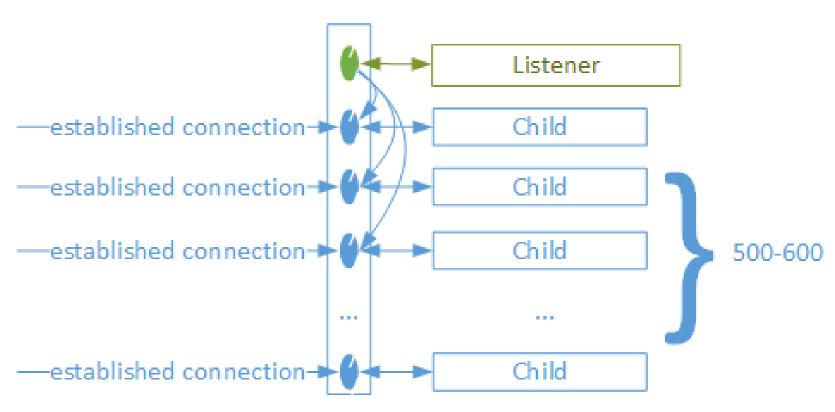
Timestamp % 32 + MSS + 24-bit hash


- Components of 24-bit hash:
 - server IP address
 - server port number
 - client IP address
 - client port
 - timestamp >> 6 (64 sec resolution)

Slowloris

Transport Internet

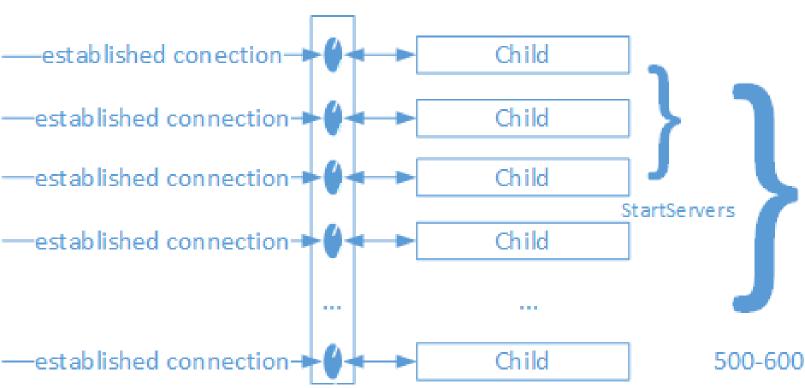
Network Ad

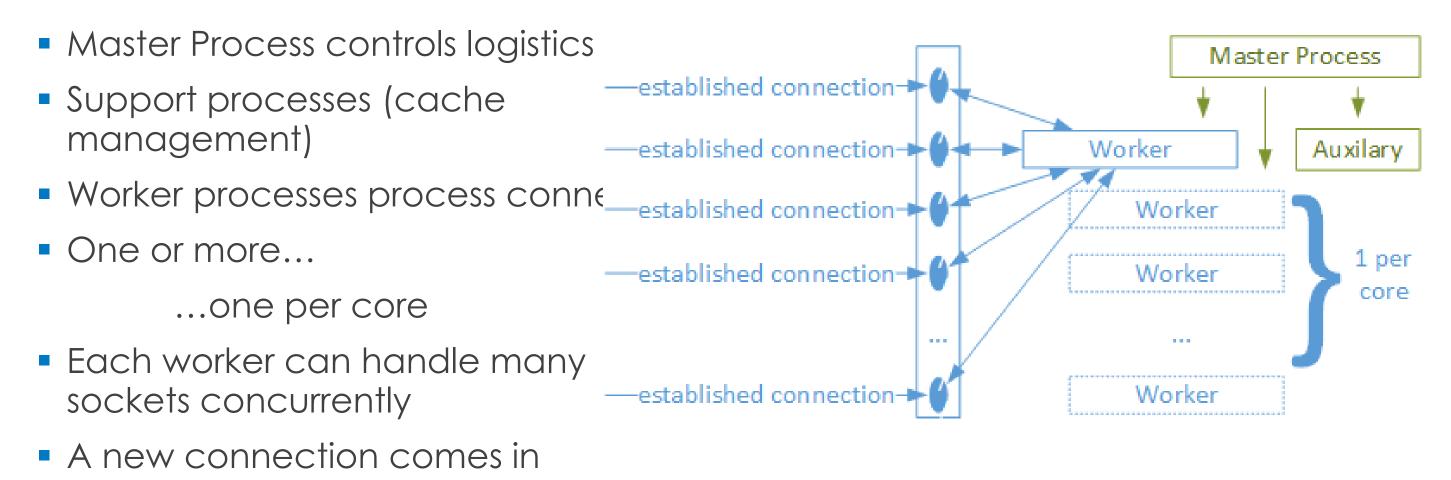

Connection handling architectures

- Process based connection handling?
 - Think "Apache"

- Event based connection handling?
 - Think "nginx"

Process oriented explained


- Listener opens sockets
- New connection comes in
- Process forks; separate process handles the connection
- New connection comes in
- Process forks; separate process handles the connection
- ...and so on...
- ...usually with up to 500-600 concurrent process copies


Apache web server (simplified)

- Few child processes listen on a s
- A new connection comes in...
- ...and one of them takes it
- Another new connection comes in...
- ...and the next one takes it.
- Pool is exhausted; new processe are spawned (forked)
- ...and so on...
- Up to about 500-600
- The initial set is defined by StartServers

Nginx (simplified)

...and is established; no dup()

...and so on...

Slowloris

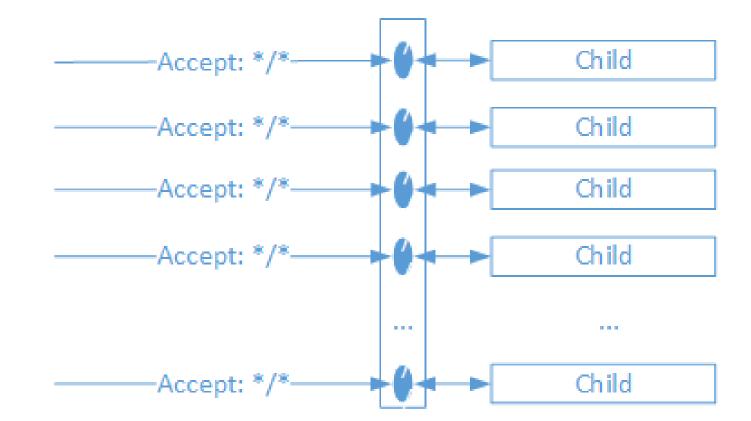
Exploits the process based model but opening a number of concurrent connections and holds them open for as long as possible with the least amount of bandwidth possible

Slowloris request

Request:

```
send: GET /pki/crl/products/WinPCA.crl HTTP/1.1
wait...
send: Cache-Control: max-age = 900
wait...
send: Connection: Keep-Alive
wait...
send: Accept: */*
wait...
send: If-Modified-Since: Thu, 06 Aug 2015 05:00:26 GMT
wait...
```

```
send: User-Agent: Microsoft-CryptoAPI/6.1
```


wait...

```
send: Host: crl.microsoft.com
```


Slowloris illustrated

- The client opens a connection and sends a request...
- ...then another...
- ...and another...
- ...and so on.
- ...and waits some time...
- ...and sends the next header
- ...and so for each connection
- ...and so on...

Slowloris mitigation

- Change of the software architecture
- Use of event driven reverse proxy to protect the server (like nginx)
- Dedicated hardware devices

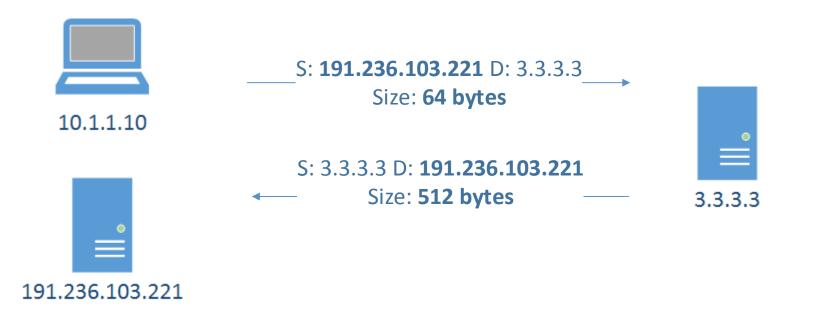
Questions?

Reflection and amplification attacks

Two different terms

Reflection using an intermediary to deliver the attack traffic

Amplification ability to deliver larger response than the trigger traffic


Reflection

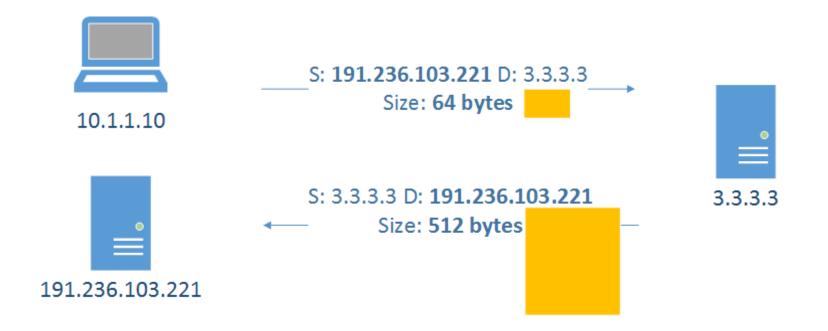
Reflective attacks

- Attacks where the an unwilling intermediary is used to deliver the attack traffic
- The attacker would normally send a packet with a forged source IP address to the intermediary. The forget address is going to be the one of the target. The intermediary will deliver a response which will go to the target instead of the attacker
- Note to audience: think what protocols we can use for that?

What is reflection(ed) attack

- Attacks where the an unwilling intermediary is used to deliver the attack traffic
- Attacker sends a packet with a spoofed source IP set to the victim's
- Reflectors respond to the victim

Reflector types


The ones that are of interest are:

- DNS
- NTP
- SSDP
- SNMP
- RPC (reported lately but not really large)

Amplification

What is amplification attack?

 Asymmetric attack where response is much larger than the original query

Amplifiers types

- The ones that are of interest and provide amplifications are:
 - DNS
 - SSDP
 - NTP
 - SNMP

• Amplification factors:

https://www.us-cert.gov/ncas/alerts/TA14-017A

Amplification quotients

Protocol	Bandwidth Amplification Factor	Vulnerable
DNS	28 to 54	Multiple
NTP	556.9	Multiple
SNMPv2	6.3	GetBulk req
NetBIOS	3.8	Name resolu
SSDP	30.8	SEARCH req
CharGEN	358.8	Character g request
QOTD	140.3	Quote requ
BitTorrent	3.8	File search
Kad	16.3	Peer list exc
Quake Network Protocol	63.9	Server info e
Steam Protocol	5.5	Server info e

Source: US-CERT: https://www.us-cert.gov/ncas/alerts/TA14-017A

change exchange exchange

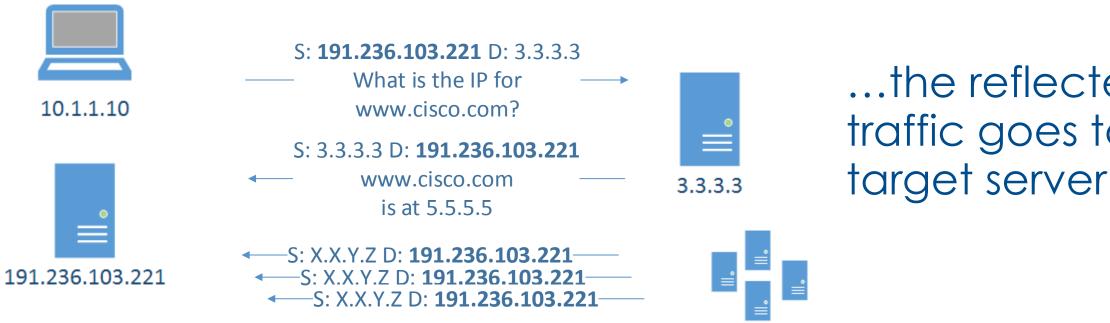
Jest

generation

quest Iution quest

Command

Questions?


DNS Reflection

Application Presentation Session Transport Network Data Link Ss Physical

What is DNS reflection attack?

What happens if an attacker forges the victim address as its source?

... and what if hundreds of misconfigured open DNS resolvers are used?

...the reflected traffic goes to the

Consider this query

- Triggered by something like:
- dig ANY isc.org @3.3.3.3
- Example:~\$ dig ANY isc.org @172.20.1.1 # My home lab
- Flip over for answer

Consider this (cont'd)

ahostwood@saw:~\$ dia ANY isc.org @172.20.1.1

;; ANSWER SECTION:

481 IN RRSIG DS 7 2 86400 20130607155725 20130517145725 42353 org. KHMs09DaFMx416/7xXhaD9By0NrqCiQ4kBnqi6oq2VocZRREAbUHHrAY isc.org. KydlgKO5vOaw6l1Fy86/oiODkk3yyHspciwdJvjlefu4PktdUnd1IQxW 791g/jWgHBL5iQQigBYv7Z5IfY1ENn+6fPOchAywWgEBYcdgW8pzzOjz zlU=

12892 5 2 F1E184C0E1D615D20EB3C223ACED3B03C773DD952D5F0EB5C777586D E18DA6B5 481 IN DS isc.org.

12892 5 1 982113D08B4C6A1D9F6AEE1E2237AEF69F3F9759 isc.org. 481 IN DS

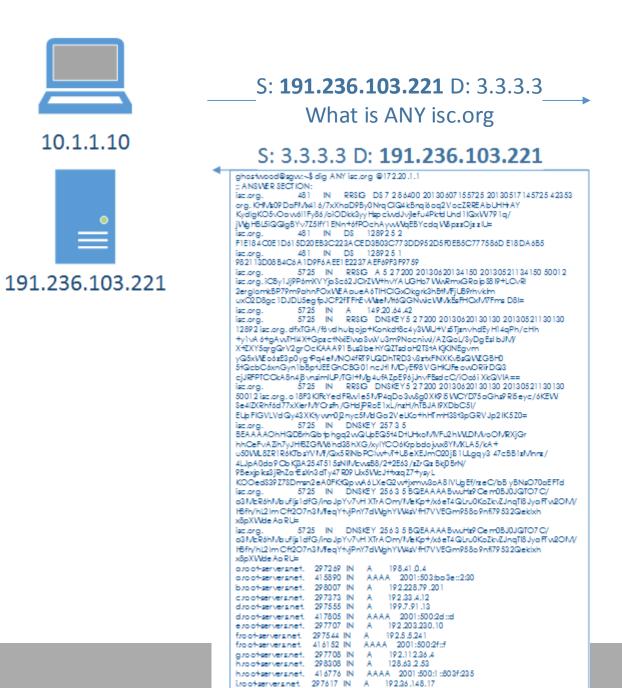
RRSIG A 5 2 7200 20130620134150 20130521134150 50012 isc.org. iCBy1Jj9P6mXVYjaSc62JClrZW+hvYAUGHo7WwRmxGRaipS8I9+LCvRI 5725 IN isc.org. 2erglomkBP79m9ahnFOxWEAaueA6TIHCIGxOkgrk3hBtMFjUB9rhvkIm uxO2D8gc1DJDLI5egfpJCF2fITFhEvWzeMt6QGNwicWMxBsFHCxM7Fms D8I=

5725 IN A 149.20.64.42 isc.org.

5725 IN RRSIG DNSKEY 5 2 7200 20130620130130 20130521130130 12892 isc.org. dfxTGA/f6vdhulqojp+Konkdt8c4y3WiU+Vs5TjznvhdEyH14qPh/cHh isc.ora. +y1vA6+gAwTHI4X+GpzctNxiElwaSwVu3m9NocniwI/AZQoL/SyDgEsI bJM/X+ZXY5qrgQrV2grOcKAAA91Bus3behYQZTsdaH2TStAKjKINEgvm yQ5xWEo6zE3p0ygtPq4eMNO4fRT9UQDhTRD3v3ztxFINXKvBsQWZGBH0 5tQcbC6xnGyn1bBptJEEGhCBG01ncJt1MCyEf98VGHKJFeowORiirDQ3 cjJRFPTCCkA8n4j8vnsimIUP/TGI+Mg4ufAZpE96jJnvFBsdcC/iOo6i XkQVIA==

5725 IN RRSIG DNSKEY 5 2 7200 20130620130130 20130521130130 50012 isc.org. o18F3KIFkYedFRw1e5MP4qDo3wSg0XK9I5WCYD75aGhs9RI5eyc/6KEW isc.org. Se4IZXRhf6d77xXlerMYCrsfh/GHdjPRoE1xL/nzH/hTBJAI9XDbC5I/EUpFIGVLVdQy43XKtywm0j2nyc5MdGa2VeLKo+hHTmH3St3pGRVJp2IK 5Z0=

DNSKEY 257 3 5 BEAAAAOhHQDBrhQbtphgg2wQUpEQ5t4DtUHxoMVFu2hWLDMvoOMRXjGr isc.ora. 5725 IN hhCeFvAZih7yJHf8ZGfW6hd38hXG/xyIYCO6Krpbdojwx8YMXLA5/kA+ u50WIL8ZR1R6KTbsYVMf/Qx5RiNbPClw+vT+U8eXEJmO20jlS1ULggy3 47cBB1zMnnz/4LJpA0da9CbKj3A254T515sNIMcwsB8/2+2E63/zZrQz Bkj0BrN/9Bexjpiks3jRhZatEsXn3dTy47R09Uix5WcJt+xzqZ7+ysyL KOOedS39Z7SDmsn2eA0FKtQpwA6LXeG2w+jxmw3oA8lVUgEf/rzeC/bB yBNsO70aEFTd


5725 IN DNSKEY 256 3 5 BQEAAAABwuHz9Cem0BJ0JQTO7C/a3McR6hMaufljs1dfG/inaJpYv7vH isc.ora. XTrAOm/MeKp+/x6eT4QLru0KoZkvZJnaTl8JvaFTw2OM/ltBfh/hL2lm Cft2O7n3MfeaYtviPnY7dWahYW4sVfH7VVEGm958o9nfi79532Qeklxh x8pXWdeAaRU=

198.41.0.4 a.root-servers.net. 297269 IN A

a.root-servers.net. 415890 IN AAAA 2001:503:ba3e::2:30

b.root-servers.net. 298007 IN A 192.228.79.201

Reflection and Amplification

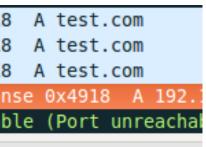
On the wire

127.5.5.5	Attack	127.0.0.1	DNS	70 Standard query 0x4918
127.5.5.5	traffic	127.0.0.1	DNS	70 Standard query 0x4918
127.5.5.5		127.0.0.1	DNS	70 Standard query 0x4918
127.5.5.5		127.0.0.1	DNS	70 Standard query 0x4918
127.0.0.1	Reflector	127.5.5.5	DNS	153 Standard query respon
127.5.5.5	Target	127.0.0.1	ICMP	181 Destination unreacha

- Victim is 127.5.5.5
- Attacker spoofs traffic as if it comes from 127.5.5.5
- Reflector (127.0.0.1) responds to the query to the victim.

BACK SCATTER

Notice the victim is responding with port unreachable because there is nothing running on that UDP port. This is called back-scatter



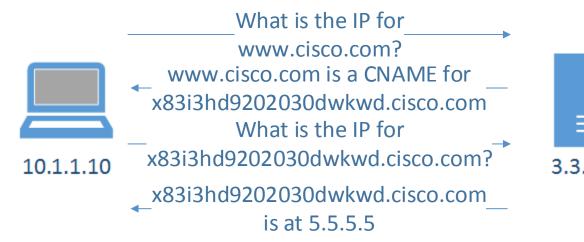
On the wire (details)

35820 128.14790100 127.5.5.5	127.0.0.1	DNS	70 Standard query 0x4918 A test.com
35821 128.14790800 127.5.5.5	127.0.0.1	DNS	70 Standard query 0x4918 A test.com
35822 128.14791500 127.5.5.5	127.0.0.1	DNS	70 Standard query 0x4918 A test.com
35823 128.14794100 127.0.0.1	127.5.5.5	DNS	153 Standard query response 0x4918 A 192.
35824 128.14794400 127.5.5.5	127.0.0.1	ICMP	181 Destination unreachable (Port unreachab
▶Frame 35820: 70 bytes on wire (560 bits), 70 bytes captur	ed (560 bits) o	n interface 0
▶Linux cooked capture			
▶ Internet Protocol Version 4, Sr	: 127.5.5.5 (127.5.5.5),	Dst: 127.0.0.1	(127.0.0.1)
▶User Datagram Protocol, Src Por			
▼Domain Name System (query)			
Transaction ID: 0x4918			
▶Flags: 0x0100 Standard query	Victim is 127.5.	5.5	
Questions: 1			
Answer RRs: 0	Attack traffic fi	rom 127.5.3	5.5; port 49249
Authority RRs: 0		7 0 0 1	
Additional RRs: 0	To reflector 127	/.0.0.1; por	T 53
▼Queries			
▼test.com: type A, class IN			
Name: test.com			
Type: A (Host address)			
Class: IN (0x0001)			

On the wire (details)

35820 128.14790100 127.5.5.5 127	.0.0.1	DNS 70	Standard query	0x4918
35821 128.14790800 127.5.5.5 127	.0.0.1	DNS 70	Standard query	0x4918
35822 128.14791500 127.5.5.5 127	.0.0.1	DNS 70	Standard query	0x4918
35823 128.14794100 127.0.0.1 127	.5.5.5	DNS 153	Standard query	respon
35824 128.14794400 127.5.5.5 127	.0.0.1	ICMP 181	Destination un	reachab
▶User Datagram Protocol, Src Port: domain <mark>(53)</mark> ▼Domain Name System (response)	, Dst Port: 24058	(24058)		
[Request In: 34402] [Time: 0.017424000 seconds]		(107001		
Transaction ID: 0x4918 ▶Flags: 0x8580 Standard query response, No en Questions: 1 Answer RRs: 1 Authority RRs: 1 Additional RRs: 2	the vict	or (127.0.0.1 im (127.5.5.	.5)	
▼Queries ▼test.com: type A, class IN Name: test.com Type: A (Host address) Class: IN (0x0001)	Note the	e number d	of records	in th
<pre>▼Answers ▶test.com: type A, class IN, addr 192.168.1 ♥Authoritative nameservers ▶test.com: type NS, class IN, ns localhost ♥Additional records ▶localhost: type A, class IN, addr 127.0.0.1 ▶localhost: type AAAA, class IN, addr ::1</pre>				

the query to

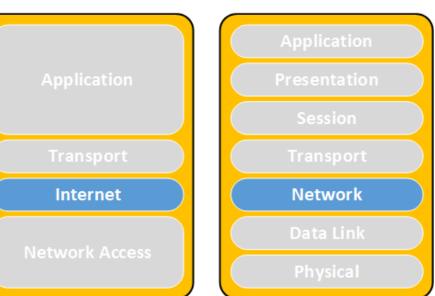

ne answer

DNS attacks mitigation (victim)

- Validate packet and query structure
- Whitelisting
- Challenges*
- High performance equipment
 - Variety of techniques
 - Vendor dependent
- Drop known reflector traffic: <u>http://openresolverproject.org/</u>

DNS attacks mitigation (victim - DNS challenge)

What is a DNS challenge?



3.3.3.3

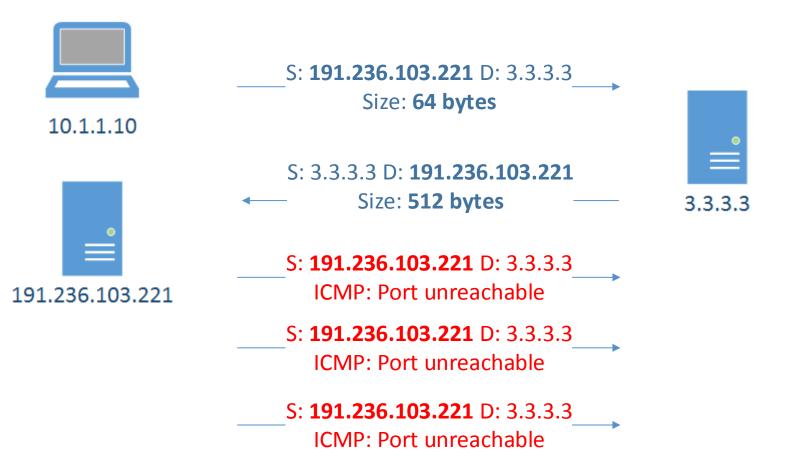
- Challenges with DNS challenge?
 - Two times the amount of traffic
 - Two times the packet rate
 - Computational resources

Backscatter

Backscatter

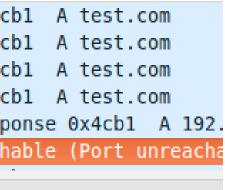
- Traffic that is a byproduct of the attack
- Why is that interesting?
 - It is important to distinguish between the actual attack traffic and unintended traffic sent by the victim
 - Imagine a SYN flood against a "victim" protected by a major scrubbing provider spoofed from IP address X
 - What is the traffic to X going to look like?

SYN Flood Backscatter?


■ Cookie flood ☺

100

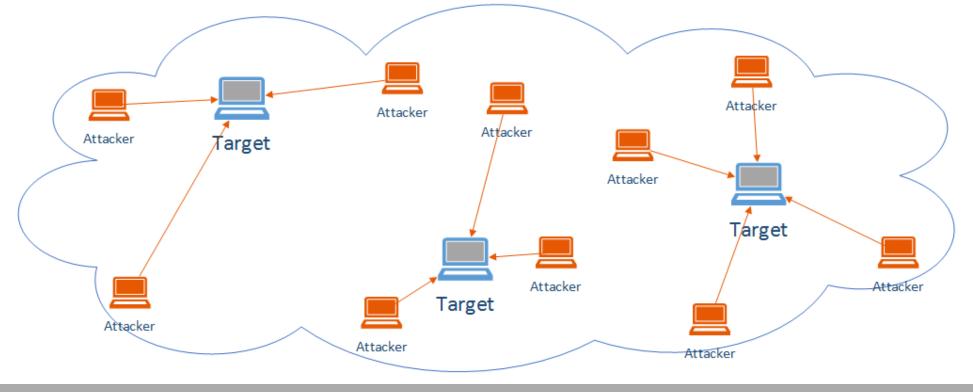
Are you a reflector? (Backscatter)


In some cases return traffic/backscatter

101

Back scatter on the wire

20021 1.756892000 127.5.5.5	127.0.0.1	DNS	70 Standard query 0x4cl
20022 1.756900000 127.5.5.5	127.0.0.1	DNS	70 Standard query 0x4cl
20023 1.756907000 127.5.5.5	127.0.0.1	DNS	70 Standard query 0x4cl
20024 1.756915000 127.5.5.5	127.0.0.1	DNS	70 Standard query 0x4cl
20025 1.756942000 127.0.0.1	127.5.5.5	DNS	153 Standard query resp
20026 1.756945000 127.5.5.5	127.0.0.1	ICMP	181 Destination unreach
▼Internet Protocol Version 4, Src:		Dct. 127 0 0 1	(127 0 0 1)
Version: 4	127.5.5.5 (127.5.5.5)	DSU: 127.0.0.1	(127.0.0.1)
Header length: 20 bytes			
▶Differentiated Services Field: 0	VCA (DSCD AV3A, Class S	plactor 6. ECN.	AVAA: Not ECT (Not ECN Capat
Total Length: 165	100 (DSCF 0750. Class 5	etector o, Ech.	0x00. Not-Eci (Not Ech-capa
Identification: 0x4ea9 (20137)			
	_	The	$\sim (107 E E E)$ consol
▶ Flags: 0x00 Fragmont offset, 0		The victin	n (127.5.5.5) sends
Fragment offset: 0 Time to live: 64		port unre	achable to the re
Protocol: ICMP (1)		•	
►Header checksum: 0x27e4 [validat	ion disabled]	(127.0.0.1	
Source: 127.5.5.5 (127.5.5.5)			-
Destination: 127.0.0.1 (127.0.0.	1)		
	1)		
[Source GeoIP: Unknown]			
[Destination GeoIP: Unknown]			
Internet Control Message Protocol			
Type: 3 (Destination unreachable	;)		
Code: 3 (Port unreachable)	_		
Checksum: 0x47d2 [correct]			

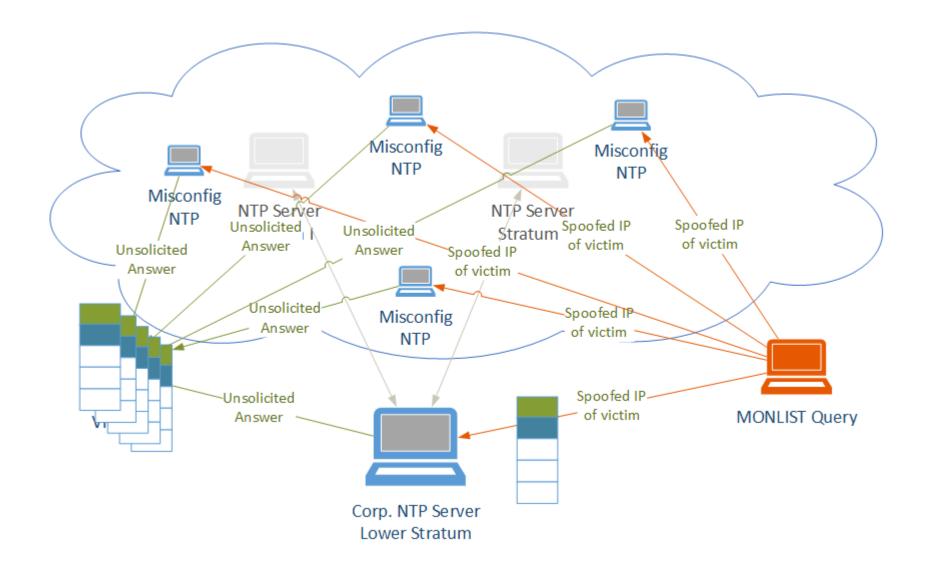

able Transport))

ls and ICMP eflector

Large scale mitigation and load distribution: Anycast

- Unicast operation: one point of presence, all traffic goes there
- Anycast: multiple points of presence advertise the same address space
- Network ensures user is routed to the "closest" instance

Network Time Protocol (NTP)


Application Presentation Session Transport Network Data Link Ss Physical

NTP reflection attack

- Stratum servers
- NTP queries

- MONLIST command
 - provides

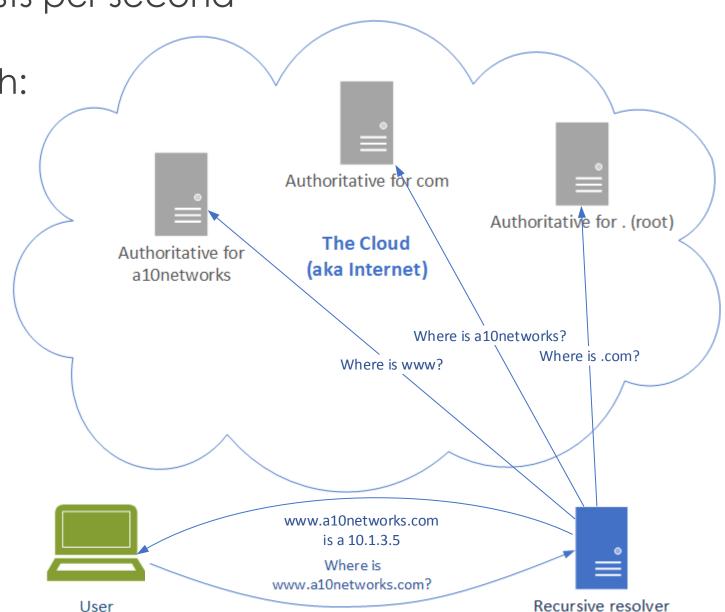
 a list of clients that have
 time readings


NTP server configuration

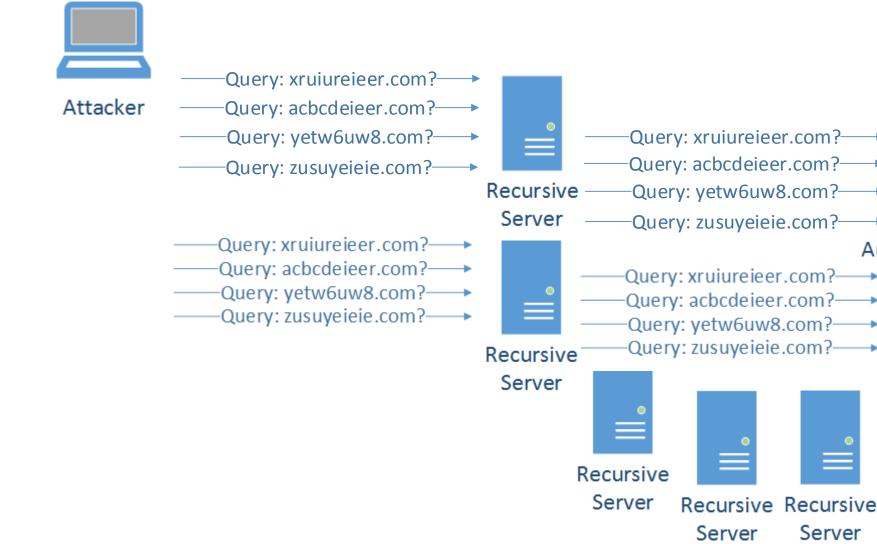
- Access lists
- NTP authentication
- Disable the MONLIST command
- Useful hints: <u>http://www.team-cymru.org/secure-ntp-template.html</u>
- List of open NTP reflectors: <u>http://openntpproject.org/</u>

106

Questions?


Cache busting (back to DNS)

108

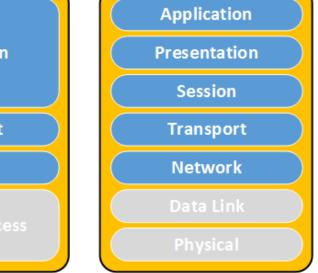

DNS resolution (rehash)

- Let's focus on the number of requests per second
- User talks to recursive resolver, which:
 - Caches answers
 - Answers a large number of requests
- The recursive talks to different level of authoritative servers, which:
 - Do not cache answers (they are auths)
 - Relatively lower number of queries
- Consider caching and authoritative capacity

What is cache busting?

- Attacker sends a query to recursive/reflector
- Recursive forwards the query
- And so on...
- Imagine one more recursive resolver
- Rinse and repeat...

/eieie.com?—			
	Aut	horita	tive
eieer.com?—	→ fo	or .cor	n
eieer.com?—			
5uw8.com?—			
eieie.com?—	-		


Questions?

Questions?

Good Internet citizenship

Application Transport Internet

Network Acc

113

Mitigations

- Defend yourself
 - Anycast
 - Some form of IPS/DDoS mitigation gear
 - Overall network architecture
- Defend the Internet
 - Rate-limiting
 - BCP38/140 (outbound filtering) source address validation
 - Securely configured DNS, NTP and SNMP servers
 - No open resolvers
- Talk to the professionals

114

Are you noticing the imbalance? **Defend yourself**

- Anycast (DNS)
- Some form of IPS/DDoS mitigation gear

Defend the Internet

- Rate-limiting
- BCP38/140 (outbound filtering) source address validation
- Securely configured authoritative DNS servers
- No open resolvers

• Lots of money

Somewhat cheap

What's the point I'm trying to make?

- It's not feasible to mitigate those attacks single handedly
- We need cooperation
- Companies need to start including "defending the Internet from themselves" as a part of their budget – not only "defending themselves from the Internet"

What can I do about it?

- RFC 2827/BCP 38 Paul Ferguson
- If possible filter all outgoing traffic and use proxy
- URPF
- BCP 140: "Preventing Use of Recursive Nameservers in Reflector Attacks"
- http://tools.ietf.org/html/bcp140
- Aka RFC 5358

Resources

- DNS
- <u>http://openresolverproject.org/</u>
- NTP
- <u>http://openntpproject.org/</u>
- If you see your IP space in the lists provided by those sites resolve it

Summary

- Discuss what DDoS is, general concepts, adversaries, etc.
- Went through a networking technology overview, in particular the OSI layers, sockets and their states, tools to inquire system state or capture and review network traffic
- Dove into specifics what attack surface the different layers offer
- Discussed different attack types
- Terminology
- Tools

Thank you

