

MULTICLOUD AS THE NEXT GENERATION CLOUD INFRASTRUCTURE

Deepti Chandra

Agenda

The "Application-aware" Cloud Principle

Problem Statement in Multicloud Deployment

SDN in the Multicloud

Building Blocks

Building the Private Cloud – DC Fabric

Building the Private Cloud – DC Interconnect (DCI)

Building the Private Cloud – WAN Integration

Building the Private Cloud - Traffic Optimization

THE APPLICATION-AWARE CLOUD PRINCIPLE

The Traditional Way

I need to deliver a service to my users Build or buy or lease an Execution environment

Why Data Centers Need Multicloud?

What Has Changed

Today most applications leverage cooperation between components deployed across multiple cloud infrastructure

I need to deliver a service to my users Today – The New Cloud

DECISIONS DRIVEN BY:

- 1. User experience
- 2. Costs and TCO control
- 3. Agility (time to change)
- 4. Security and confidentiality
- 5. Skills and know-how
- 6. Application specific requirements (scale, latency, performance, hypervisors, ...)

PROBLEM STATEMENT IN THE MULTICLOUD DEPLOYMENT

Challenges of the Multicloud

A set of independent 'fabrics'

- Different skillsets for different clouds
- Manual operations for daily tasks

- Long lead-times for change management
- · Inconsistent visibility for distinct environments

Clouds are Disconnected Environments

A Day in the Life of DC/Cloud Operations

THE END USER

"I need a two-tier application execution environment with these characteristics"

"Can I have my DB cluster up and running by next week and connected to the Web front end ?"

"DB Cluster can't talk to Web server"

THE OPERATOR

- 1. Provision tenant
- 2. Image servers
- 3. Create containers
- 4. Create/select policies
- 5. Request networking service to public cloud
- 6. Create EC2 instance
- 7. ...

Need to correlate & contextualize: "which IP1/MAC1 on VNI X on Switch A can't talk to IP2/MAC2 on VNI Y on Switch B?"

COMPLEXITY

INCONSISTENCY

REVENUE-LOSS

LONG LEAD TIME

PROVISIONING

MANAGEMENT

VISIBILITY

SDN IN THE MULTICLOUD

WHAT DOES SDN OFFER IN THE MULTICLOUD?

MULTICLOUD NETWORKING AS A SERVICE

Single pane of glass orchestration across clouds

Visibility and unified management across clouds

Secure service delivery across clouds

Building for containerization

Federation to unify controllers across clouds

Administration of Fabrics

- A fabric is an independently administered IP network managed by the controller for configuration, and eventually routing control plane and analytics
- The controller has IP reachability to ALL endpoints (e.g. a device) which belongs to the fabric managed by the controller
- Devices/endpoints can belong to multiple fabrics

Multi-cloud Networking-as-a-service for Any Workload and Any Cloud

Automate Private Clouds / Multi-cloud infrastructure

One-click Application Services

Predictive Analytics and Visibility

A Unified View Across Cloud and Networking Operations

BUILDING BLOCKS

Data Center Requirements

Design Requirement

Rising EW traffic growth

- Resiliency and low latency
- Agility and speed

- Open architecture
- Design simplicity

Architectural flexibility

Technology Attribute

Easy scale-out

Non-blocking, fast fail-over

Any service anywhere

No vendor lock-in

No steep learning curve

EW, NS & DCI

Common Building Blocks for Data Centers

BUILDING THE PRIVATE CLOUD – DC FABRIC

Defining Terminology...

Building the DC Fabric

Let's start with the smallest unit – the POD

- Leverage BGP constructs to achieve L2/L3 traffic and multi-tenancy
- L3 gateway placement can be at the leaf or spine
- Hierarchical route-reflection for reduced control plane state and redundancy
- Easy integration with L3VPN with no added provisioning
- Service insertion for EW and/or NS traffic (inter-tenant inter-subnet)

Architectural Flexibility

Containerization influence on network infrastructure

PROBLEM STATEMENT

Communication needs to be enabled between 2000 containers residing on servers spread across racks

Connection between servers and TORs can be Layer 2 or Layer 3

Building a Fabric for Containers

- Layer 2: Trunk ports with each app container identified by a separate VLAN mapped to VNIs on hardware VTEPs
- Benefits: Higher scale capabilities, active-active load balancing with open standards (EVPN N-way multihoming)

- Layer 3: Routing agent can be residing on the server hypervisor
- Benefits: Routing table scale, greater provisioning benefits by using unnumbered addresses for peering between servers and TORs

Design Flexibility

Centralized or distributed routing – design choices based on requirements

BUILDING THE PRIVATE CLOUD – DC INTERCONNECT (DCI)

Let's Draw a Picture – DCI

EVPN – DCI Design Options

Over The Top (OTT)

- Extended control plane
- Interconnect used as transport (EVPN unaware)

Segmented Approach

DCI

- Clear demarcation
- Interconnect EVPN aware
- MPLS TE in core, L2 stretch

Layer 3 DCI

- Clear demarcation
- Interconnect EVPN unaware
- MPLS TE in core, NO L2
 stretch

Design simplicity Scaling constraint

DCI Options

Over the Top (OTT) – DCI

Control plane is extended across sites with the connecting infrastructure used as transport only (EVPN unaware)

Segmentation of DC & WAN domains

Clear demarcation of DC and WAN boundaries, connecting infrastructure is EVPN aware

Layer 3 DCI

Only Layer 3 connectivity is extended across DCs (no Layer 2). Data plane domain is confined within DC and not extended across DCs.

BUILDING THE PRIVATE CLOUD – WAN INTEGRATION

How are host IP prefixes exchanged between L3 gateway/s and DC edge/s so as to be advertised out of the DC?

EVPN Route Type 5 – Classification

Type 5 route provides all necessary forwarding information

Type 5 route needs recursive route resolution for forwarding. The lookup is for an IP prefix but forwarding information is extracted from Type 2 route

Pure Route Type 5 Model

Packet Walk – Pure Route Type 5

EVPN Route Type 5 vs L3VPN NLRI

Similar information carried across both NLRI types

Benefits with EVPN Type 5

- Unified solution end to end with one address family inside the DC and outside
- Data plane flexibility with EVPN use over MPLS or IP core
- If you do not have MPLS between DCs for DCI
 - It is not possible to run L3VPN over VXLAN
 - For control plane, Route Type 5 is the only option
- Hybrid cloud connectivity (Type 5 with VXLAN over GRE/IPsec)

BUILDING THE PRIVATE CLOUD – TRAFFIC OPTIMIZATION

What is VMTO ? <u>V</u>irtual <u>Machine Traffic Optimization</u>

Resolves ingress and egress traffic tromboning, focusing on north-south traffic optimization

Ingress and Egress North-South Traffic Optimization

JUNIPEI

How to Avoid Egress Tromboning?

Distributed layer 3 anycast gateway function ensures, local DC gateway preferred (even on host migration)

How to Avoid Ingress Tromboning?

No Ingress Tromboning

Thank You