
June 24th, 2018
DENVER, CO

Sponsored By

What you should get out of this

• UNDERSTANDING THAT AUTOMATION PLAYS A CRUCIAL PART IN SECURITY

• THE IMPORTANCE OF INTEROPERABILITY AND INTEGRATION

• SCOPE OF AUTOMATION FOR SECURITY

• SECURITY WILL REQUIRE MULTIPLE PARTS OF YOUR ORGANIZATION TO WORK TOGETHER

• UNDERSTANDING OF DEVSECOPS

2

DevOpsqatestinfosec

• “IN OTHER WORDS, WHEN YOU HEAR "DEVOPS"
TODAY, YOU SHOULD PROBABLY BE
THINKING DEVOPSQATESTINFOSEC.” - GENE KIM

3

Implementation in the POD

• EACH POD HAS A SALT-MASTER AND SALT-MINION MONITORING THE VSRX
• SALT-MASTER IS SETUP ON TOOLS SERVER

• SALT-MINION IS SETUP ON TRUST SERVER

4

Salt-reactor
• THE MAIN PURPOSE OF THE SALT REACTOR IS TO LISTEN TO EVENTS TAKING PLACE ON THE

VSRX AND REACT BASED ON THE ACTIONS ALREADY CONFIGURED VIA ANSIBLE , YAML ,
PYTHON SCRIPTS ALREADY CONFIGURED ON THE SALT-MASTER.

• A WORK FLOW OF WHICH AND HOW FILES ON SALT-MASTER INTERACT CORRESPONDING TO
THE EVENT IS DESCRIBED BELOW :

5

This diagram only show a single
workflow of how salt reactor works. It is
implemented in the POD assigned to
the each team and the purpose of it to
get participant familiar with Salt.
Participants can create any number of
workflows they want .

Hackers At
Work!

6

ProblemGopher

Brandon Premo
Facebook

Jason Reifstenzel
Carleton University

Gabriel Nunez
Sandia National Lab

Akshat Sharma
Cisco

Mike Korshunov
Cisco

Overview

 Scenario Recap / Topology
 What we:

- Saw
- Did / Encountered as a problem
- Would do di.erently

Topology

Our initial thoughts

 Who has used salt before?
 How does this jinja thing work?
 What are we keying in on from the message bus?

What we did

Parsing the message bus

"jnpr/syslog/Blue8_SRX/SYSTEM": {

 "_stamp": "2018-06-24T17:29:45.277785",

 "daemon": "RT_IDP",

 "event": "SYSTEM",

 "facility": 1,

 "hostip": "192.168.108.1",

 "hostname": "Blue8_SRX",

 "message": "IDP: at 1529861385, ANOMALY Attack log <10.123.199.226/41691->192.168.128.51/21> for TCP protocol

and service FTP application FTP by rule 1 of rulebase IPS in policy NANOG. attack: id=2330, repeat=0, action=NONE,

threat-severity=HIGH, name=FTP:OVERFLOW:PASS-TOO-LONG, NAT <0.0.0.0:0->0.0.0.0:0>, time-elapsed=0, inbytes=0,

outbytes=0, inpackets=0, outpackets=0, intf:untrust:ge-0/0/0.0->dmz:ge-0/0/2.0, packet-log-id: 0, alert=no,

username=N/A, roles=N/A and misc-message -",

 "priority": 14,

 "raw": "<14>Jun 24 17:29:44 Blue8_SRX RT_IDP: IDP_ATTACK_LOG_EVENT: IDP: at 1529861385, ANOMALY Attack log

<10.123.199.226/41691->192.168.128.51/21> for TCP protocol and service FTP application FTP by rule 1 of rulebase

IPS in policy NANOG. attack: id=2330, repeat=0, action=NONE, threat-severity=HIGH, name=FTP:OVERFLOW:PASS-TOO-

LONG, NAT <0.0.0.0:0->0.0.0.0:0>, time-elapsed=0, inbytes=0, outbytes=0, inpackets=0, outpackets=0,

intf:untrust:ge-0/0/0.0->dmz:ge-0/0/2.0, packet-log-id: 0, alert=no, username=N/A, roles=N/A and misc-message -",

 "severity": 6,

 "timestamp": "2018-06-24 13:29:45"

},

Automated con2guration
 Appliance:

auser4Tools:/srv/salt$ cat extract_ip.sls

{% set ip = pillar['var'] %}

{% set ip2 = {'ipN' : 'empty','ipk': 'name'} %}

{% for word in pillar['var2'].split() if "->" in

word %}

 {% set ip1 = word.split('->')[0] %}

 {% set ip1 = ip1|replace("<","") %}

 {% if '192.168.108.' in ip1 %}

 {% break %}

 {% endif %}

 {% if '10.123.198.4' in ip1 %}

 {% break %}

 {% endif %}

 {% if ip2.update({'ipk' : ip1 }) %} {% endif %}

 {% set ip1 = ip1.split('/')[0] %}

 {% if ip2.update({'ipN' : ip1 }) %} {% endif %}

 {% break %}

{% endfor %}

{% if pillar[‘var1’] == ‘RT_IDP’ %}

 salt://push_policy.set :

 junos:

 - install_config

 - template_vars:

 host_ip: {{ ip2[‘ipN’] }}

 host_name:

{{ ip2[‘ipk’] }}

{% endif %}

YAML encoding to avoid
 render problem

Next time:
Policy propagation to…

Trust DMZ

Conclusion

 A++ would hack again
 Thanks to NANOG and Juniper

NANOG	73	Hackathon
Benedikt	Rudolph	- DECIX
Flavio	Castro	– Paypal

Shraddha	Tekawade	- Oracle	(OCI)
Aaron	Ashley	- Oracle	(OCI)

Andrew	Warren	- Oracle	(OCI)
Syed	W	Ahmed	- Oracle	(OCI)

Forensics	– Where	is	the	attack?

●Syn-Floods:	noticed	in	Syslog	/	Kibana
●Ping	floods:	detected	via	security-onion	in	squert
●Service	vulnerability:	Detected	via	security-onion	logs	in	squert
●Whitelisting	public	services	from	DMZ	
(global	policy)
○Prevents	blocking	good	traffic	by	accident

●Went	through	all	services	on	web1/2
○Secured	FTP

○Patch	Servers	– more	details	later	on	that

SRX	Implementation
• Created	policies	that	matched	
communication	requirements

• Provided	lockout	protection

• Too	many	bad	IP’s	to	enter	manually

• Support	for	automation	by	using	an	
address-set

Automated	Event	Processing

• On	Salt-master,	processed	
syslog	messages	from	SRX.

• Parsed	messages	from	RT_IDP	
daemon

• Added	addresses	to	the	
BAD_IPS	address-set

Example	event

Log	Event	Processing

• Input	data	patterns	were	learned	
on	the	go

•Had	multiple	iteration	on	parsing	
correct	src	and	dest	and	then	take	
actions.

•At	one	point	we	blocked	NAT	and	
WEB1	and	WEB2	Ips.		

Final	jinja	template

Uncovering	Targeted	Attacks	with	Squert

Stop	Tomcat	Service

• Saltstack	is	very	hard	to	diagnose	/	debug*
• Fixed	parsing	but	then	broke	automated	policy	push	due	to	a	
syntax	error,	which	was	fixed	later.

• Pushing	the	policy	is	easy
• Frequency	of	attack	events	reduced	software	testing	speed
•Only	received	logs	from	SRX	IDP	no	security	onion	messages

• Saltstack	event	log	structure	differed	from	raw	and	kibana	logs

Saltstack	experience

*This	could	be	from	lack	of	experience	with	tool.

Future	enhancements

• Test	driven	development	would’ve	been	nice

• Block	on	threat	level	in	log
• Process	security-onion	logs	and	automate	actions	based	on	that	as	
well

•Use	better	parsing	to	include	src/dst	ports
•Make	firewall	rules	zone	based

Thank you!

