Panoptes: A Network

Telemetry Ecosystem
- Part Deux

Varun Varma, Sr. Principal Engineer

Panoptes is:

» Greenfield Python based

network telemetry platform tha
provides real time telemetry
and analytics @ Yahoo

* Implements discovery, polling,

distribution bus and numerous
consumers

CANT/HAVE ANETWORK OUTAGE

IFYOU HAVEN'T GOT NETWORK MONITORING

Architecture

Celery Redis Zookeeper Kafka
[J
([J

Core Concepts

Plugins

Resources

Metrics

Enrichments

Data encoding and distribution

Plugins:

e Are Python classes conforming to a well defined API

e Can collect/process and transform data from any source

o SNMP
o API
o CLI

e May be of three types:
o Discovery

O Enrichment
O Metrics

Resources:

e Are abstract representations of what should be monitored

O In the context of network telemetry, these would be usually be the network devices to monitor

e Are ‘discovered’ using discovery plugins

o Which, usually, would would talk to a Configuration Management Database - but could also be
from topology walks

e Have and id, endpoint and various metadata

o For example, the vendor name or operating system version of a device would be it's metadata

e Are specified within Panoptes with a DSL

O Example: “resource_class” = “network” AND “resource_subclass” = “switch” AND
“resource_type” = “cisco” AND “resource_metadata.os_version” LIKE “12.2%”

Metrics:

e Are numbers that can be measured and plotted

0 Example is the bytes in/bytes out counter of an interface

e Are generally fast changing

O Or have the potential to do so

e Can be collected through various means:
o SNMP
o API
o CLI
o Streaming

Enrichments:

e Are metadata in addition to metrics

O Forinterfaces, we collect metrics like bytes in and bytes out and enrichments like interface name
and description

e Can be any data type

O Unlike metrics which can only be numeric

e Can come from sources other than the device being
monitored

O The geo location of the device or the ASN number to name mapping

Enrichments - pt. 2:

e Usually are more expensive to process than metrics
o Might need complex transformations
o And therefore:
Are collected at a rate less than those for metrics
We collect interface metrics every 60 seconds, but enrichments every 30 minute

Are cached
e Overall, let us scale more by being efficient about data
collection

Data Encoding and Distribution

e Panoptes is a distributed system

o Discovery, enrichment and polling are all decoupled from each other

e Kafka and/or Redis are used to pass data between all
subsystems

O This makes it so that you can extend or introspect any subsystem

e JSON is used to encode all data within Panoptes

O It's non-performant but developer/operator friendly

10

Workflow

Collect Data Post Process

Graphing Alerting

g Message Bus

Analytics/
Reporting

1

Scaling and
Operations

Scale: Orders of Magnitude

100K 10k

Servers Network

1M 60

Time Series Seconds SR

Scaling Issues

Panoptes was built to be horizontally scalable and free of
single points of failure from day one

o Performance or high-availability are not easy to bolt on afterwards

We chose Python to be developer friendly - it was every bit as
slow as we thought

© High throughput actions are delegated to C extension modules
o Ditto for JSON serialization for all data

We broke everything - Redis, Zookeeper, Kafka

O Redis allows ‘only’ 10,000 clients to be connected by default :)

14

Divide and Conquer: Federated API

* Due to availability concerns, each site has its own
MySQL cluster

* Telemetry data must be available during a
network partition

* Centralized telemetry store might not be
reachable in all cases

* Each API endpoint acts as a tribe node

* |If a tribe node doesn’t have the requested data, it
returns a pointer to the node that does through a
find API

Covered Systems

Interface metrics for Arista, Cisco, Juniper
System metrics for A10 (AX, TH), Arista EOS, Brocade

TrafficWorks, Cisco I0S-XE, Juniper (MX, SRX)
e Functional metrics for VIPs (A10 AX, TH, Brocade), A10 LSN,

Juniper SRX
e Ethernet state and topology for Cisco IOS, NX-OS

16

Operational Experiences

e Metrics across different platforms or versions of even the
same OS from vendors aren’t consistent

o Normalizing these metrics was our single biggest time drain

e SNMP has it’s faults, but is still ubiquitous

O Specially so in a multi-vendor, multi-platform and multi-generational networks such as ours

Performance of APIs was much better than SNMP
We knew that we didn’t know how we would use the data

o Using Kafka proved to be the right choice - we already have 3 separate consumers

17

Operational Experiences - Pt. 2

e We don't expose ‘raw’ data to external systems

O It's tempting to give access to external teams via Kafka, but that would lead to friction if we want
to change our internals
O Instead, we expose APIs which abstract away all our internals

e Custom Uls are useful
O And enabled by APIs

18

APl Examples

Realtime — Purpose
Specific
{
"members_metrics": [
{
"load_balancer_model": "
"weight": 1,

"site": B
"load_balancer_make": "
"vip_property":
"max_connections": 100000,
"bytes_in_gauge": 802742,
"bytes_out_gauge": 0,

"

"load_balancer_name":
"polling_interval": 60,

"active_connections_gauge":

"vip_port": 443,
"status": 0,
"pool_name": "
"packets_out_gauge": 0,
"timestamp": 1496772838,
"real port": 443,
"vip_type": "l3dsr",
"packets_in_gauge": 4221,
"cache_age": 41,

"ip_address":
"name": "

Bulk/Historical - Generic

-{
- aggregateTags: [
"_aggregate",
" "resource_endpoint",
! "resource_site",
"vip_type",
"real_port",
"vip property"
" 1.
' - dps: {
"l 1525809840: 100000
e
o ", metric: "${Panoptes.network-load-balancer-vip.real_max_connections}",
- tags: {

vip_protocol: "tcp",

vip_ip_address_version: "4"

vip_port: "9999"
real_dns_name: "#°°
vip_dns_name: "

’ Y

__groupId__: "real_dns_name:

24307,

"
’

"connections_per_second_gauge": 281,

"total_connections_counter"

1 746440138,

|vip_dns_name:

:|vip_ip_address_version:4|vip_port:9999|vip_protocol:tcp”

19

Centralized Telemetry

YAHOO!

We push metrics to our in-house time
series database and alerting service
(centralized telemetry)

Custom dashboard service our user
base is familiar with

Economies of scale — no need to N N A A AN AN
provision new hardware or software NV WYY

Here we see control and data plane CPU statistics for a load balancer in
one of our West Coast data centers.

Custom Ul Examples

os » 0w

Cobecton: ENABLED

Automation: ENABLED

Banner DEDICATED 81D VIP

®
E
o
2
<
&
»

PO A

Aot or 373 %

[p—

g

[ome——

Asarmg Cuvion ()

& ComaTen W)

Kosarmg e (5

Kosarng 8 (5

g 5

VIP -

LB -

Data Visualization

60
Overall Health

ight

Cor

o
i @

yahoo.net (zpss

50

40

30

20

Port - 80

Port - 443

IPv6 Health: 99.27

IPv6

€]

Up Warning NS Down

Port - 4080 Port - 4443 Port - 9999

uP

Future: Streaming
Telemetry

Proposed Architecture

—> <—

Device n

Celery Redis Zookeeper Kafka
[J
([J

A recap: we were

here at NANOG
70...

Since then:

Added an enrichment subsystem

Built many plugins to poll system and functional metrics
Worked out scaling issues

And most importantly...

25

I’'m here to announce
open sourcing of
Panoptes

MVP

e Core Platform including discovery, enrichment and polling
e Interface metrics and enrichment plugins

O Also heartbeat plugins

e Integration with InfluxDB

27

An example dashboard

Panoptes Example Dashboard -
Router - Bits Out Router - Bits In
763 Mib
572 Mib
381 Mib

191 Mib

9/11 0 9/9 16:00 9/10 00:00 9/10 08:00 9/1016:00 9/11 00:00 9/11 08:00

== interface.bits._ gauge (interface_name: Ethemet1/10} == interface.bits_out__gauge {interface_name: Ethemet1/1} == interface.bits_out_gauge {interface_name: Ethernet1/10}
== interface.bits_| i themet1/11} == interface.bits_in_gauge {interface_name: Ethernet1/12} == interface.bits_out__gauge {interface_name: Ethemet1/11} == interface.bits_out__gauge {interface_name: Ethemet1/12}
interface.bits_] Ethernet1/13) interface.bits_in__gauge {interface_name: Ethemet1/14) interface.bits_out__gauge {interface_name: Ethemet1/13} interface.bits_out__gauge {interface_name: Ethernet1/14}
Interface.bits_|) hernet1/15) Interface.bits_in__gauge {interface_name: Ethernet1/16} Iinterface.bits_out__gauge {interface_name: Ethemet1/15} Interface.bits_out__gauge {interface_name: Ethernet1/16}
interface.bits_in__gauge {interface_name: Ethemet1/17} == Interface.bits_in__gauge {interface_name: Ethernet1/18} Interface.bits_out__gauge {interface_name: Ethemet1/17} == interface.bits_out__gauge {interface_name: Ethemet1/18}
interface.bits_in__gauge {interface_name: Ethernet1/19) interface.bits_in__gauge {interface_name: Ethernet1/2} interface.bits_out__gauge {interface_name: Etheret1/19} interface.bits_out__gauge {interface_name: Ethemnet1/2}
interface.bits_in__gauge {interface_name: Ethernet1/20} interface.bits_in__gauge {interface_name: Ethernet1/21} interface.bits_out__gauge {interface_name: Ethernet1/20} interface.bits_out__gauge {interface_name: Etheret1/21}
Interface.bits_|) ‘thernet1/22) Interface.bits_in__gauge {interface_name: Ethernet1/23} interface.bits_out__gauge {interface_name: Ethemet1/22} interface.bits_out__gauge {interface_name: Ethemet1/23}
== Interface.bits_in_gauge {interface_name: Etheret1/24) == interface.bits_in__gauge {interface_name: Ethemet1/3} = Interface.bits_out__gauge {interface_name: Ethemet1/24} == interface.bits_out_gauge {interface_name: Ethemet1/3}
== interface.bits_in__gauge {interface_name: Ethermnet1/4} == interface.bits_in_gauge {interface_name: Ethemet1/5} == interface.bits_out__gauge {interface_name: Ethemet1/4} == interface.bits_out__gauge (interface_name: Ethernet1/5}

Get it at: https://github.com/yahoo/
panoptes

Questions?

