
Panoptes: A Network
Telemetry Ecosystem
- Part Deux

•  Greenfield Python based
network telemetry platform that
provides real time telemetry
and analytics @ Yahoo

•  Implements discovery, polling,
distribution bus and numerous
consumers

2

Panoptes is:

3

Architecture

Celery Redis Zookeeper Kafka

Tim
e S

eries D
B

Plugin Framework

Discovery Plugins Polling Plugins

Device Specific Plugins (SNMP, API)

C
M

D
B

C
hef

Enrichment
Plugins

●  Plugins
●  Resources
●  Metrics
●  Enrichments
●  Data encoding and distribution

4

Core Concepts

●  Are Python classes conforming to a well defined API
●  Can collect/process and transform data from any source

○  SNMP
○  API
○  CLI
○  *

●  May be of three types:
○  Discovery
○  Enrichment
○  Metrics

5

Plugins:

●  Are abstract representations of what should be monitored
○  In the context of network telemetry, these would be usually be the network devices to monitor

●  Are ‘discovered’ using discovery plugins
○  Which, usually, would would talk to a Configuration Management Database - but could also be

from topology walks

●  Have and id, endpoint and various metadata
○  For example, the vendor name or operating system version of a device would be it’s metadata

●  Are specified within Panoptes with a DSL
○  Example: “resource_class” = “network” AND “resource_subclass” = “switch” AND

“resource_type” = “cisco” AND “resource_metadata.os_version” LIKE “12.2%”

6

Resources:

●  Are numbers that can be measured and plotted
○  Example is the bytes in/bytes out counter of an interface

●  Are generally fast changing
○  Or have the potential to do so

●  Can be collected through various means:
○  SNMP
○  API
○  CLI
○  Streaming

7

Metrics:

●  Are metadata in addition to metrics
○  For interfaces, we collect metrics like bytes in and bytes out and enrichments like interface name

and description

●  Can be any data type
○  Unlike metrics which can only be numeric

●  Can come from sources other than the device being
monitored
○  The geo location of the device or the ASN number to name mapping

8

Enrichments:

●  Usually are more expensive to process than metrics
○  Might need complex transformations
○  And therefore:

■  Are collected at a rate less than those for metrics
●  We collect interface metrics every 60 seconds, but enrichments every 30 minute

■  Are cached

●  Overall, let us scale more by being efficient about data
collection

 9

Enrichments - pt. 2:

●  Panoptes is a distributed system
○  Discovery, enrichment and polling are all decoupled from each other

●  Kafka and/or Redis are used to pass data between all
subsystems
○  This makes it so that you can extend or introspect any subsystem

●  JSON is used to encode all data within Panoptes
○  It’s non-performant but developer/operator friendly

 10

Data Encoding and Distribution

Workflow

11

Collect Data Message Bus

TSDB MySQL

API

UI CLI

Graphing Alerting Grid

Analytics/
Reporting

Post Process

Scaling and
Operations

12

13

100K
Servers

10K
Network
Devices

100
Network
Sites

1M
Time Series

60
Seconds

10
Systems
Replaced

Scale: Orders of Magnitude

Scaling Issues

14

●  Panoptes was built to be horizontally scalable and free of
single points of failure from day one
○  Performance or high-availability are not easy to bolt on afterwards

●  We chose Python to be developer friendly - it was every bit as
slow as we thought
○  High throughput actions are delegated to C extension modules
○  Ditto for JSON serialization for all data

●  We broke everything - Redis, Zookeeper, Kafka
○  Redis allows ‘only’ 10,000 clients to be connected by default :)

Divide and Conquer: Federated API
•  Due to availability concerns, each site has its own

MySQL cluster

•  Telemetry data must be available during a
network partition

•  Centralized telemetry store might not be
reachable in all cases

•  Each API endpoint acts as a tribe node

•  If a tribe node doesn’t have the requested data, it
returns a pointer to the node that does through a
find API

DC1

DC2

DC3

DC4

DC5

DC6

DC7

DC8

Covered Systems

●  Interface metrics for Arista, Cisco, Juniper
●  System metrics for A10 (AX, TH), Arista EOS, Brocade

TrafficWorks, Cisco IOS-XE, Juniper (MX, SRX)
●  Functional metrics for VIPs (A10 AX, TH, Brocade), A10 LSN,

Juniper SRX
●  Ethernet state and topology for Cisco IOS, NX-OS

16

●  Metrics across different platforms or versions of even the
same OS from vendors aren’t consistent
○  Normalizing these metrics was our single biggest time drain

●  SNMP has it’s faults, but is still ubiquitous
○  Specially so in a multi-vendor, multi-platform and multi-generational networks such as ours

●  Performance of APIs was much better than SNMP
●  We knew that we didn’t know how we would use the data

○  Using Kafka proved to be the right choice - we already have 3 separate consumers

17

Operational Experiences

●  We don’t expose ‘raw’ data to external systems
○  It’s tempting to give access to external teams via Kafka, but that would lead to friction if we want

to change our internals
○  Instead, we expose APIs which abstract away all our internals

●  Custom UIs are useful
○  And enabled by APIs

18

Operational Experiences - Pt. 2

19

API Examples
Realtime – Purpose
Specific

Bulk/Historical - Generic

•  We push metrics to our in-house time
series database and alerting service
(centralized telemetry)

•  Custom dashboard service our user
base is familiar with

•  Economies of scale – no need to
provision new hardware or software

Here we see control and data plane CPU statistics for a load balancer in
one of our West Coast data centers.

Centralized Telemetry

Custom UI Examples

Future: Streaming
Telemetry

22

23

Proposed Architecture

Celery Redis Zookeeper Kafka

Panoptes Framework

Resource
Cache

Streaming
Telemetry Collector

Enrichment
Cache

Device 1 Device 2 Device 3 Device n

A recap: we were
here at NANOG
70...

24

●  Added an enrichment subsystem
●  Built many plugins to poll system and functional metrics
●  Worked out scaling issues
●  And most importantly...

25

Since then:

26

I’m here to announce
open sourcing of
Panoptes

●  Core Platform including discovery, enrichment and polling
●  Interface metrics and enrichment plugins

○  Also heartbeat plugins

●  Integration with InfluxDB

27

MVP

28

An example dashboard

Get it at: https://github.com/yahoo/
panoptes

29

Questions?
30

