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Panoptes is:

» Greenfield Python based

network telemetry platform tha
provides real time telemetry
and analytics @ Yahoo

* Implements discovery, polling,

distribution bus and numerous
consumers

CANT/HAVE ANETWORK OUTAGE

IFYOU HAVEN'T GOT NETWORK MONITORING



Architecture
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Core Concepts

Plugins

Resources

Metrics

Enrichments

Data encoding and distribution



Plugins:

e Are Python classes conforming to a well defined API

e Can collect/process and transform data from any source

o SNMP
o API
o CLI

e May be of three types:
o  Discovery

O  Enrichment
O  Metrics



Resources:

e Are abstract representations of what should be monitored

O In the context of network telemetry, these would be usually be the network devices to monitor

e Are ‘discovered’ using discovery plugins

o Which, usually, would would talk to a Configuration Management Database - but could also be
from topology walks

e Have and id, endpoint and various metadata

o  For example, the vendor name or operating system version of a device would be it's metadata

e Are specified within Panoptes with a DSL

O  Example: “resource_class” = “network” AND “resource_subclass” = “switch” AND
“resource_type” = “cisco” AND “resource_metadata.os_version” LIKE “12.2%”



Metrics:

e Are numbers that can be measured and plotted

0  Example is the bytes in/bytes out counter of an interface

e Are generally fast changing

O  Or have the potential to do so

e Can be collected through various means:
o SNMP
o API
o CLI
o  Streaming



Enrichments:

e Are metadata in addition to metrics

O  Forinterfaces, we collect metrics like bytes in and bytes out and enrichments like interface name
and description

e Can be any data type

O Unlike metrics which can only be numeric

e Can come from sources other than the device being
monitored

O  The geo location of the device or the ASN number to name mapping



Enrichments - pt. 2:

e Usually are more expensive to process than metrics
o  Might need complex transformations
o  And therefore:
Are collected at a rate less than those for metrics
We collect interface metrics every 60 seconds, but enrichments every 30 minute

Are cached
e Overall, let us scale more by being efficient about data
collection



Data Encoding and Distribution

e Panoptes is a distributed system

o Discovery, enrichment and polling are all decoupled from each other

e Kafka and/or Redis are used to pass data between all
subsystems

O  This makes it so that you can extend or introspect any subsystem

e JSON is used to encode all data within Panoptes

O It's non-performant but developer/operator friendly
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Workflow

Collect Data Post Process
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Scaling and
Operations




Scale: Orders of Magnitude
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Scaling Issues

Panoptes was built to be horizontally scalable and free of
single points of failure from day one

o  Performance or high-availability are not easy to bolt on afterwards

We chose Python to be developer friendly - it was every bit as
slow as we thought

©  High throughput actions are delegated to C extension modules
o  Ditto for JSON serialization for all data

We broke everything - Redis, Zookeeper, Kafka

O Redis allows ‘only’ 10,000 clients to be connected by default :)
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Divide and Conquer: Federated API

* Due to availability concerns, each site has its own
MySQL cluster

* Telemetry data must be available during a
network partition

* Centralized telemetry store might not be
reachable in all cases

* Each API endpoint acts as a tribe node

* |If a tribe node doesn’t have the requested data, it
returns a pointer to the node that does through a
find API




Covered Systems

Interface metrics for Arista, Cisco, Juniper
System metrics for A10 (AX, TH), Arista EOS, Brocade

TrafficWorks, Cisco I0S-XE, Juniper (MX, SRX)
e Functional metrics for VIPs (A10 AX, TH, Brocade), A10 LSN,

Juniper SRX
e Ethernet state and topology for Cisco IOS, NX-OS
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Operational Experiences

e Metrics across different platforms or versions of even the
same OS from vendors aren’t consistent

o Normalizing these metrics was our single biggest time drain

e SNMP has it’s faults, but is still ubiquitous

O  Specially so in a multi-vendor, multi-platform and multi-generational networks such as ours

Performance of APIs was much better than SNMP
We knew that we didn’t know how we would use the data

o  Using Kafka proved to be the right choice - we already have 3 separate consumers
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Operational Experiences - Pt. 2

e We don't expose ‘raw’ data to external systems

O It's tempting to give access to external teams via Kafka, but that would lead to friction if we want
to change our internals
O Instead, we expose APIs which abstract away all our internals

e Custom Uls are useful
O  And enabled by APIs
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APl Examples

Realtime — Purpose
Specific
{
"members_metrics": [
{
"load_balancer_model": "
"weight": 1,

"site": B
"load_balancer_make": "
"vip_property":
"max_connections": 100000,
"bytes_in_gauge": 802742,
"bytes_out_gauge": 0,

"

"load_balancer_name":
"polling_interval": 60,

"active_connections_gauge":

"vip_port": 443,
"status": 0,
"pool_name": "
"packets_out_gauge": 0,
"timestamp": 1496772838,
"real port": 443,
"vip_type": "l3dsr",
"packets_in_gauge": 4221,
"cache_age": 41,

"ip_address":
"name": "

Bulk/Historical - Generic

-{
- aggregateTags: [
"_aggregate",
" "resource_endpoint",
! "resource_site",
"vip_type",
"real_port",
"vip property"
" 1.
' - dps: {
"l 1525809840: 100000
e
o ", metric: "${Panoptes.network-load-balancer-vip.real_max_connections}",
- tags: {

vip_protocol: "tcp",

vip_ip_address_version: "4"

vip_port: "9999"
real_dns_name: "#°°
vip_dns_name: "

’ Y

__groupId__: "real_dns_name:

24307,

"
’

"connections_per_second_gauge": 281,

"total_connections_counter"

1 746440138,

|vip_dns_name:

:|vip_ip_address_version:4|vip_port:9999|vip_protocol:tcp”

19



Centralized Telemetry

YAHOO!

We push metrics to our in-house time
series database and alerting service
(centralized telemetry)

Custom dashboard service our user
base is familiar with

Economies of scale — no need to N N A A AN AN
provision new hardware or software NV WYY

Here we see control and data plane CPU statistics for a load balancer in
one of our West Coast data centers.



Custom Ul Examples
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Future: Streaming
Telemetry




Proposed Architecture

—> <—

Device n
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A recap: we were

here at NANOG
70...




Since then:

Added an enrichment subsystem

Built many plugins to poll system and functional metrics
Worked out scaling issues

And most importantly...
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I’'m here to announce
open sourcing of
Panoptes



MVP

e Core Platform including discovery, enrichment and polling
e Interface metrics and enrichment plugins

O  Also heartbeat plugins

e Integration with InfluxDB
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An example dashboard

Panoptes Example Dashboard -
Router - Bits Out Router - Bits In
763 Mib
572 Mib
381 Mib

191 Mib

9/11 0 9/9 16:00 9/10 00:00 9/10 08:00 9/1016:00 9/11 00:00 9/11 08:00

== interface.bits._ gauge (interface_name: Ethemet1/10} == interface.bits_out__gauge {interface_name: Ethemet1/1} == interface.bits_out_gauge {interface_name: Ethernet1/10}
== interface.bits_| i themet1/11} == interface.bits_in_gauge {interface_name: Ethernet1/12} == interface.bits_out__gauge {interface_name: Ethemet1/11} == interface.bits_out__gauge {interface_name: Ethemet1/12}
interface.bits_] Ethernet1/13) interface.bits_in__gauge {interface_name: Ethemet1/14) interface.bits_out__gauge {interface_name: Ethemet1/13} interface.bits_out__gauge {interface_name: Ethernet1/14}
Interface.bits_| ) hernet1/15) Interface.bits_in__gauge {interface_name: Ethernet1/16} Iinterface.bits_out__gauge {interface_name: Ethemet1/15} Interface.bits_out__gauge {interface_name: Ethernet1/16}
interface.bits_in__gauge {interface_name: Ethemet1/17} == Interface.bits_in__gauge {interface_name: Ethernet1/18} Interface.bits_out__gauge {interface_name: Ethemet1/17} == interface.bits_out__gauge {interface_name: Ethemet1/18}
interface.bits_in__gauge {interface_name: Ethernet1/19) interface.bits_in__gauge {interface_name: Ethernet1/2} interface.bits_out__gauge {interface_name: Etheret1/19} interface.bits_out__gauge {interface_name: Ethemnet1/2}
interface.bits_in__gauge {interface_name: Ethernet1/20} interface.bits_in__gauge {interface_name: Ethernet1/21} interface.bits_out__gauge {interface_name: Ethernet1/20} interface.bits_out__gauge {interface_name: Etheret1/21}
Interface.bits_| ) ‘thernet1/22) Interface.bits_in__gauge {interface_name: Ethernet1/23} interface.bits_out__gauge {interface_name: Ethemet1/22} interface.bits_out__gauge {interface_name: Ethemet1/23}
== Interface.bits_in_gauge {interface_name: Etheret1/24) == interface.bits_in__gauge {interface_name: Ethemet1/3} = Interface.bits_out__gauge {interface_name: Ethemet1/24} == interface.bits_out_gauge {interface_name: Ethemet1/3}
== interface.bits_in__gauge {interface_name: Ethermnet1/4} == interface.bits_in_gauge {interface_name: Ethemet1/5} == interface.bits_out__gauge {interface_name: Ethemet1/4} == interface.bits_out__gauge (interface_name: Ethernet1/5}




Get it at: https://github.com/yahoo/
panoptes




Questions?




