CONTROL BGP STATE EXPLOSION IN SCALE-OUT PEERING

Network design with Abstract Next Hop construct

Rafal Szarecki, Juniper Networks

Engineering Simplicity

NIPAI

AGENDA

Scale-out peering: Why What it is and what it is not Principles of operation

Control-Plane challenges BGP Scale Common practice limitations

Solution

Abstract Next-Hop (ANH) iBGP architecture w/ ANH Configuration examples

AGENDA

Scale-out peering: Why What it is and what it is not Principles of operation

Control-Plane challenges BGP Scale Common practice limitations

Solution

Abstract Next-Hop (ANH) iBGP architecture w/ ANH Configuration examples

WHY SCALE OUT PEERING

BUSINESS AND INDUSTRY

- Screen Time & interactive applications
- Bandwidth (B/W) + RoundTripTime (RTT) = experience

• Data consumer/producer in distinct networks.

SCALE-OUT ATTRIBUTES

- resiliency
- capacity
- competition

DENSE PEERING SURFACE

SCALE-OUT PEERING

Given Peer AS is connected to multiple ASBRs at given site (of local AS)

- All ASBRs are set to construct ECMP toward given Peer AS (egress ECMP)
- All ASBRs sends equal routing information to given Peer AS (desired ingress ECMP)

Principles

- Provides required B/W with ECMP
- Provides site-local N+1 redundancy

SCALE-OUT PEERING ⊂ DISTRIBUTED PEERING

If given Peer AS is connected to ASBRs, each at different site (of local AS) \rightarrow distributed but not scale-out.

Multiple ASBRs at given site, each serving disjoined set of Peer ASes \rightarrow distributed not scale-out.

SCALE-OUT PEERING SITE

Multiple (N) ASBRs; 1-**2**-M Core Routers(CR); Route Reflectors(RR)

Something between

- Passive network
- Active nodes
 - L2 (vintage)
 - L3 underlay
 - L3
 - Many combination but some commonalities...

SITE NETWORK - SOMETHING BETWEEN

passive connections -> Leaf/Spine-Spine/Leaf

L2 switches in the middle

CRs and ASBRs are L3 neighbors Low requirements on device in the middle

Leaf-Spine w/overlay

L3 SPINEs w/o overlay

- SPINEs participate in AS-wide routing
 - Requirements could be high RIB/FIB, MPLS-TE, etc

CORE-DISTRIBUTION-ACCESS

COMMON PRINCIPLES

Equal LB among ASBR – BGP multipath – RIB scale-up

N+1 redundancy model for:

- Inter-AS Interface failures
- Multiple eBGP session failure
- ASBR failure
- Site failure

Scale-out ASBRs w/o impacting other sites

- 2 x Route Reflector (RR) per site
- keep # session under control

Restore optimal traffic in seconds, not 10's minutes. Regardless of scale.

AGENDA

Scale-out peering: Why What it is and what it is not Principles of operation

Control-Plane challenges BGP Scale Common practice limitations

Solution

Abstract Next-Hop (ANH) iBGP architecture w/ ANH Configuration examples

RIB SCALE-UP EXAMPLE

Network

- 40 sites
- 4 ASBR's per site
- 2 RR per site
- 500k external prefixes (pfx) per ASBR;
 250K active
- 1M unique prefixes

80M path's overall @ peering surface;

- 80 paths per prefix
- 160M @ RR.
- 4 best (or more if same IGP cost to multiple sites; 8? 12?)
- 1... 4... (8?) backup
- 80%+ really not needed.

THE PEER NETWORK

Don't assume too much on Peer AS– non-consistent prefix-set

- Some prefix received on sub-set of ASBR but not on all.
- Tradeoff:
 - Full (Internet) FIB on CR or SPINE OR -
 - Sub-optimal routing (redirection form one ASBR to other) -OR -
 - exposure of all path from peering surface to any ASBR in AS (scale explosion)

Can be also Scale-out – a lot of eBGP sessions.

SOLUTION GOALS

- 1. Reduce number of BGP path across network
- 2. Keep ECMP
- 3. Enable sub-second restoration after failures for 500k+ impacted active BGP paths.
 - Interface
 - Sessions
 - ASBR
 - Site

EXAMPLE NETWORK

Native IP network. BGP:

- RRx.1 full mesh; RRx.2 full mesh
 - one active path advertised.
- CR: multipath, ADD-PATH from RR's
- ASBR:
 - multipath, ADD-PATH from RR's
 - only active path to RR's
 - multipath from eBGP (LB)

SHORTAGE OF NEXT HOP SELF

BEFORE:

- CR route to pfx_2 w/ 4 BGP Next-Hops (B_NH) ASBR1.1-ASBR1.4 loopbacks)
- all 4 loopbacks in IGP

AFTER:

- all 4 loopbacks in IGP
- ASBR1.1 send (500k+) withdraws (minutes?)
- RR reflects
- CR removes path and update FIB
- Routes at other sites need to do the same.

SHORTAGES OF NEXT HOP UNCHANGED (1)

BEFORE:

- CR route to pfx_2 w/ 4 B_NH (one Peer_IP per ASBR)
- all 4 NNI subnets in IGP

FAILURE:

• BGP session down, Interface UP

AFTER:

- all 4 Peer_IPs in IGP
- ASBR1.1 send (500k+) withdraws (minutes?)
- ...

SHORTAGES OF NEXT HOP UNCHANGED (2)

Interfaced goes down...

 NNI subnet removed from IGP. Peer_IP upreachable

ADD-PATH (4) among sites will solve this problem but:

- 4 x scale-up control plane
- 4 x scale-up in Next-Hop table (ASIC constrain)
- "cold-start" convergence time increase
- Churn exposure.

Other sites

CR

RR

- original B_NH unreachable
- switch to alternate ASBR (SITE2)
- then switch back to SITE1 after update

Long-Haul link usage - congestion; RTT;

AGENDA

Scale-out peering: Why What it is and what it is not Principles of operation

Control-Plane challenges BGP Scale Common practice limitations

Solution

Abstract Next-Hop (ANH) iBGP architecture w/ ANH Configuration examples

ABSTRACT NEXT-HOP (ANH)

No protocol changes. Same old good BGP!

Arbitrary IP/32 address:

- set as B_NH when path form (member of) sub-set of eBGP advertised to iBGP.
- CONDITIONALY inserted into IGP
 - When at least one eBGP session form sub-set is ESTABLISHED/Converged

Sub-set of eBGP sessions – configuration, up to operator's decision: E.g.

- all sessions on given ASBR with same peer AS
- all sessions on given ASBR with same Transit providers
- all sessions on given SITE with same peer AS

Generic concept, not only for scale-out peering.

ASBR OPERATION W/ ANH – INTRA-SITE

Setup

eBGP sessions sub-set - all session w/ AS2 from ASBR.

ASBR-PeerAS-ANH (AP-ANH) - unique per ASBR, per PeerAS – (ANH_1.1_2)

RR1.x

- gets 1 path from each ASBR w/ B_NH==AP-ANH (regardless of # eBGP session w/ AS2)
- advertise ADD-PATH (5) to CR1.x and ASBR

CR1.x load-balance among 4 B_NHs

ASBR OPERATION W/ ANH – INTRA-SITE

Failures

One session with AS2

- B_NH on iBGP not changed. Other attributes unchanged.
- No Update send to RR.
- like NHS

One session with AS3 (@ ASBR1.2)

- B_NH unreachable in IGP. Path invalid. CR remove path form ECMP group. CR sent to un-affected ASBR only.
- ASBR1.1 (slowly) withdraws paths
- like NH unchanged (peer IP)

All session with AS2 (@ ASBR1.1)

- B_NH unreachable in IGP. Path invalid. CR remove path form ECMP group. CR sent to un-affected ASBR only.
- ASBR1.1 (slowly) withdraws paths
- like nothing else

ASBR OPERATION W/ ANH – INTRA-SITE

Failures

All session with AS2 on all ASBR_1.x

- B_NHs unreachable in IGP.
 - Path invalid. CR remove 4 path form ECMP group.
 - CR sent traffic to other site.
- ASBR1.x (slowly) withdraws paths
- like nothing else

ASBR OPERATION W/ ANH – AS-WIDE

Setup

eBGP sessions set - all session w/ AS2 from all ASBR at site.

Site-PeerAS-ANH (SP-ANH) - unique per <mark>SITE</mark>, per PeerAS – (ANH_s1_2)

RR1.x - advertise one path to other sites (RRy.x) w/ B_NH:=SP-ANH

ASBR1.x – insert SP-ANH into IGP if its AP-ANH is active.

CR/CS at other sites – resolves SP-ANH via IGPload balance among all CR1.x/CRy.x

ASBR OPERATION W/ ANH – AS-WIDE

Failures

One session with AS2

- No Update/Withdraw send to among RR.
- like NHS

One session with AS3 (@ ASBR1.2)

- SP-ANH reachable in IGP.
- No FIB changes on other sites (same B_NH).
- ORIGINATOR ID changed Update send to among RR.

ASBR OPERATION W/ ANH – AS-WIDE

Failures

All session with AS2 (@ ASBR1.1)

- SP-ANH reachable in IGP.
- No FIB changes on other sites (same B_NH).
- ORIGINATOR ID changed Update send to among RR.

All session with AS2 on all ASBR_1.x

- B_NHs unreachable in IGP. Other site
 - Path invalid. CR/CS remove 4 path form ECMP group.
 - At other site CR/CS sent traffic to other site.
- ASBR1.x (slowly) withdraws paths
- like nothing else

RESULTS – CONTROL PLANE STATE MITIGATION

Network

- 40 sites
- 4 ASBR's per site
- 2 RR per site
- 500k external pfx per ASBR; 250k best.
- 1M prefixes

Peering surface – 80M path, 40M active.

Control Plane Scale

- RR : 11M path
 - 40 x 250k = 10M path from other sites
 - 4 x 250k =1M path from local ASBRs

• CR : 2.5-10M path

- 2 x (4-5) x 250k = 2-2.5M path (best on local ASBR)
- 2 x (1-5*) x 750k = 1.5-7.5M path
- ASBR : 3-10M path
 - 2 x (3-5) x 250k = 1.5-2.5M path (best on local ASBR)
 - 2 x (1-5*) x 750k = 1.5-7.5M path

* if given prefix, when learned from eBGP is best at 5 remote sites

RESULTS - ECMP

Network

- 40 sites
- 4 ASBR's per site
- 2 RR per site
- 3 CR per site (3-ple plane core)

let SITES 2-6 are in same IGP distance form SITE 1.

ECMP – 24 way

- across up-to 5 remote sites, each reachable over 3 core planes, and then over 4 ASBRs there.
- If best exit on local ASBR 4 way.

CONFIGURATION EXAMPLE – AP-ANH (JUNOS)

CONFIGURATION EXAMPLE – AP-ANH (IOS-XR)

CONFIGURATION EXAMPLE – SP-ANH (JUNOS)

@ASBR:

SUMMARY

Scale-out solves challenges with Bandwidth, redundancy, RTT, etc.

At cost of scale-up Control Plane states.

New construct and practices in protocol configuration/network design needed.

- Abstract NH is useful construct.
- Use it to control BGP scale in scale-out peering is example of practices.
- draft-szarecki-grow-abstract-NH-scaleout-peering

THANK YOU!