

Trends in 400G Optics for the Data Center

Christian Urricariet NANOG 75

San Francisco, February 2019

Data Center Connections are Driving Optics Volume

- Due to the ongoing large increase in bandwidth demand, Data Center connections are expected to move from 25G/100G to 100G/400G
- Within the Data Center Racks
 - 10GE still being deployed
 - 25GE starting to be deployed in volume
 - **100GE** (or 50G) will follow
- Between Data Center Racks
 - 40GE still being deployed
 - 100GE starting to be deployed in volume
 - 400GE will follow at large Cloud Service Providers
- Long Spans/DCI & WAN
 - 10G DWDM/Tunable still being deployed
 - 100G/200G Coherent starting to be deployed
 - 400G Coherent will follow Then 600G or 800G

Forecasted Data Center Ethernet Port Shipments

Source: Dell'Oro, 2018

Forecasted 400GE Shipments by Market Segment

Mainstream 1RU Ethernet Switch Roadmap

First Deployed	Electrical I/O [Gb/lane]	Switching Bandwidth	TOR/Leaf Data Center Switch Configuration	
~2010	10G	1.28T	32xQSFP+ (40G)	
~2015	25G	3.2T	32xQSFP28 (100G)	3.2Tb/s switches based on 100G QSFP28 modules being deployed in cloud data centers today.
~2019	50G	6.4T	2 ports of 200G	Given the multiple switching ICs expected to be available, the
~2020	50G	12.8T	32 ports of 400G	market is likely to be fragmented in the future.

Large growth in bandwidth demand is pushing the industry to work on technologies and standards to support future 12.8T switches.

400G and Next-Gen 100G Ethernet Optical Standardization

					-		
Interface	Link Distance	Media type		Optical Technology			
400GBASE-SR16	100 m (OM4)	32f Parallel MMF		16x25G NRZ Parallel VCSEL SR16 r	not expected		
400GBASE-DR4	500 m	8f Parallel SMF	•	4x100G PAM4 Parallel (SiP)	e deployed	400GE interfaces	
400GBASE-FR8	2 km	2f Duplex SMF	•	8x50G PAM4 LAN-WDM (DML)		standardized in IEEE	
400GBASE-LR8 10 km		2f Duplex SMF		8x50G PAM4 LAN-WDM (DML)	002.305		
Interface	Link Distance	Media type		Ontical Technology	-		
100GBASE-SR2	100 m (OM4)	4f Parallel MMF		2x50G PAM4 850nm (V/CSEL)		Next-Gen 100GE	
100GBASE-DR 500 m		2f Dupley SME 100G PAM4 1310pm (EML)			standardized in IEEE		
	Link Distance	Media tura	•		-	802.3cd	
Internace	Link Distance			Optical rechnology			
400GBASE-SR8	100 m (OM4)	16f Parallel MMF		8x50G PAM4 850nm (VCSEL)		 Multimode 400GE 	
400GBASE-SR4.2	100 m (OM4)	8f Parallel MMF	•	8x50G PAM4 BiDi 850 / 910nm (VCSEL)		objectives in IEEE	
Interface	Link Distance Media type			Optical Technology		P802.3cm	
400G-FR4	2 km	2f Duplex SMF	•	4x100G PAM4 CWDM (EML)		100GLambda	
100G-FR	2 km	2f Duplex SMF	•	100G PAM4 1310nm (EML)		MULTI-SOURCE AGREEMENT	
100G LR	10 km	2f Duplex SMF	•	100G PAM4 1310nm (EML)			
 VCSEL technology to be used <100m Silicon Photonics to be used <1km DML/EML technology to be used <40km 				SWDM to enable 400GE over Duplex MMF in the future			

400GE Optical Transceiver Form Factor MSAs

QSFP-DD

CFP8 is the *1st-generation 400GE* module form factor, to be used in core routers and DWDM transport client interfaces.

Module dimensions are slightly smaller than CFP2

Supports either CDAUI-16 (16x25G NRZ) or CDAUI-8 (8x50G PAM4) electrical I/O

QSFP-DD and OSFP modules being developed as *2nd-generation 400GE*, for **high port-density data center switches**.

Enable **12.8Tb/s** in 1RU via 32 x 400GE ports Support **CDAUI-8** (8x50G PAM4) electrical I/O only QSFP-DD host is backwards compatible with QSFP28

Potential Types of 400G Transceivers in the Market

	PARALLEL (MPO)	DUPLEX (LC)	
MULTIMODE	SR8 & 8x50G-SR (breakouts) 70/100/100m SR4.2 70/100/150m	TBD / TBD Future support for existing enterprise duplex fiber infrastructure	BLACK = Standard IEEE interfa
SINGLE MODE	DR4 500m	FR8 / FR4 / CWDM8 2km LR8 / LR4 10km ER8 40km ZR 80km	

Multimode distances refer to OM3/OM4/OM5 MMF; Single mode distances refer to SMF.

400G Ethernet Is Taking Shape in the Cloud Data Center

9

General Trends in Data Center Optical Interconnects

- Continuous increase in bandwidth density
 - On-board optics vs. pluggable optics discussion
- Increasing adoption of optics in Server-to-TOR Switch links
- Low-latency optics for certain niche cognitive-computing applications
- Maturity of key technologies
 - High-speed VCSELs
 - Silicon photonics
- Arrival of coherent optics for data center interconnects

The Market Demands Continuous Improvement in Bandwidth Density

Module Type	# of I/O lanes	Electrical I/O	I/O Baud Rate	Module BW	Width (mm)
SFP+	1	10Gb/s-NRZ	10G	10Gb/s	13
QSFP+	4	10Gb/s-NRZ	10G	40Gb/s	18
QSFP28	4	25Gb/s-NRZ	25G	100Gb/s	18
QSFP56	4	50Gb/s-PAM4	25G	200Gb/s	18
QSFP-DD / OSFP	8	50Gb/s-PAM4	25G	400Gb/s	18
Form factor?	8	100Gb/s-PAM4	50G	800Gb/s	?

256 x 25G Switch System – 2 RU (64 x QSFP28 interfaces)

Is Pluggability Still a Requirement for Optics?

- Some optics are not pluggable; they are mounted directly on the system host PCB.
 - BOAs have been used for several years on core routers (inter-chassis) and supercomputers.
 - Very short host PCB traces enable low power dissipation and high port density.
- Higher bandwidth density can be achieved by:
 - More channels, e.g., up to 16 Tx and 16 Rx channels in a module.
 - Higher data rate per channel: 10G/ch and 25G/ch variants deployed today, 50G/ch in the future.
- The industry view however is that **pluggable optics** will be preferred for 400G Ethernet.
 - Facilitates maintenance and pay-as-you-grow model.

Optical Technologies for Next-Generation Data Centers

- Short Reach (0 to 100 meters)
 - Higher bandwidth VCSELs
 - VCSELs with sparing capability
 - VCSELs with low RIN
- Intermediate Reach (500 meters to 2 km)
 - Silicon photonics
- Long Reach (10 km and beyond)
 - DML/EMLs
 - Low-power coherent optics

Multimode Optics: Best Suited for Short Reach Links

For short reach links (<100 m), multimode optics have better cost, power, density than silicon photonics

VCSEL Tx components:

- High speed 850nm VCSEL, 150μm x 150μm die, ~8 μm diameter
- Coupling optics with 10 μ m's tolerance
- VCSEL driver, <10 mA
- Non-hermetic packaging
- MM optical alignments: 1

Si Photonics Tx components:

- High power CW 1310nm DFB, >500 μm long
- Optical isolator
- External modulator
- Coupling optics with ~1 µm tolerance
- Si Photonic PIC + IC driver, several tens of mA
- Hermetic box or enclosure
- SM optical alignments: 2

Next-Gen Intermediate Reach Optical Interconnects: 500 m to 2 km

Well-suited for DML or silicon photonics (SiP) implementation: DR4, FR4

Today's application space is divided by fiber type and reach:

Implementation of 100G-PSM4 With Silicon Photonics

• Over 84% of the functions are integrated with high yield at wafer level in a Si fab

- SiP integrates 4 modulators, 4 pin diodes, 4 x drivers, 4 x TIAs, CDR in a 3-D stacked self-hermetic, uncooled chip.
- A similar architecture is being implemented for 400G-DR4 ("400G PSM4"), driven by the need for longer reach, future-proof singlemode cabling, and integration in optics.

Several New Interface Types and Form Factors to be Deployed

- Enabled by high I/O count and by 400G-DR4 to 100G-DR breakout interoperability, highdensity 100G implementations will thrive in Leaf-Spine topologies.
- Large I/O Line Cards will have QSFP-DD or OSFP sockets.
 OSFP slots may use QSFP adapters.

400G, 200G & 100G PAM4 Transceiver Demos at OFC/ECOC 2018

400G QSFP-DD LR8/FR8 (10km)

400G QSFP-DD AOC (70m)

200G SFP56 FR4 (2km) 200G QSFP56 eFR4 (10km) 400G QSFP-DD eLR8 (30km) 400G QSFP-DD DR4 (500m)

100G QSFP28 DR/FR (2km)

Additionally, several interoperability demos were done by the MSAs

80km DCI Space: Coherent vs. Direct Detection

- Coherent interfaces are likely to capture the 80km market at 400Gb/s and higher rates.
- For 40km and shorter reaches, direct detection may be lower power and cost than coherent for the next few years. Example: 8x50Gb/s (PAM4) ER8 and eLR8 modules.
- Currently coherent technology is about 2x higher power and cost relative to 100Gb/lane direct detection.
- Standardization work by OIF 400ZR IA and IEEE P802.3cn/ct Task Forces (400G ER8 and ZR).
- Aggressive innovation will be required to maintain long-term trends to support 1.6 Tb/s ~2024.

Coherent Transmission for DCI Applications

- 100G/200G links require a transponder box to convert to coherent optical transmission in order to support 80~100km and beyond.
- Several system OEMs provide a 1RU transponder box for DCI applications, most of which use pluggable Coherent CFP2-ACO optical transceivers.

20

 Expected coherent transceiver evolution is driven by improvements in optical packaging and DSP power dissipation:

Coming Next: What Shape Will 800G Ethernet Take?

© Finisar Corporation

21

Thank You

Christian Urricariet

christian.urricariet@finisar.com

