DDoS Mitigation
Foundations
Tutorial

Course developed by: Krassimir Tzvetanov
Course material location

• The latest materials supporting this course, including newer versions of the material will be found at:
 • FIRST.org education section:
 https://www.first.org/education/trainings#DDoS-Mitigation-Fundamentals
 • krassi.biz:
 https://www.krassi.biz/ddos
• For licensing see the final slide
Overview

• What is DDoS?
• Terminology
• Factors supporting and accelerating DDoS
What is DoS/DDoS?
What is Denial of Service?

• Discussion

• Resource exhaustion... which leads to lack of availability

• Consider:
 • How is it different from major media site featuring a small website which, as a result, receives unusually large amount of traffic.
 • How is that different from company’s primary Internet connection going down?
What is Denial of Service?

• From security point of view?
 • Decreased availability

• From operations point of view?
 • An outage

• From business point of view?
 • Financial losses
DoS vs. DDoS

• What is the difference?
 • One system is sending the traffic vs many systems
 • Consider reflected attacks

• How does that change the attacks volume?
 • More systems – more capacity
DDoS Volume Factors
Additional factors supporting and accelerating DDoS

- Overall bandwidth
- Reflectors
- IOT/Embedded home and SOHO devices
- Content management systems
- Booters/Stressors (lowers threshold)
- Accessible information
Home routers

- Embedded home and SOHO devices
 - Default username/password
 - Open DNS recursive resolvers
 - Software bugs (NetUSB)
 - Network diagnostic tools
 - Some do not allow the user to turn off DNS

- XBOX and Sony attacks over Christmas (2014)
 - Lizard Stresses, 2015
 - Mirai, 2017

- Is that intentional? – “follow the money”
Compromised CMSes

• Most targeted Content Management Systems:
 • WordPress
 • Joomla

• Started in early 2013 - notably around the attacks against US financial institutions

• Now it is an easy way to build a botnet and other groups abuse it as well
Booters/Stressors

• Inexpensive
• Popular among gamers
• Tools are sold for cheap on the black market (forums)
• Range 5-10 Gbps and up to 40GBps
• Usually short duration
Low cost thanks to reflection
The Adversary
Overview

• Who are they?
• Motivation
• Skill level
• Booters
• Tools
Adversary

• Wide range of attackers
 • Gamers – on the rise!!! 😊
 • Professional DDoS operators and booters/stressors
 • Some of the attacks have been attributed to nation states
 • Hacktivists – though not recently

...and more.
Motivation

• Wide range of motivating factors as well
 • Financial gain
 • extortion (DD4BC/Armada Collective/copy cats)
 • taking the competition offline during high-gain events
 (online betting, superbowl, etc).
 • Political statement
 • Divert attention (seen in cases with data exfiltration* or financial fraud)
 • Disable firewalls (WAF)
 • Immature behavior
Skill level

• Wide range of skills
 • Depending on the role in the underground community
 • Mostly segmented between operators and tool-smiths
 • Tool-smiths are not that sophisticated (at this point) and there is a large reuse of code and services
 • This leads to clear signatures for some of the tools

• Increasing complexity
 • DirtJumper
 • xnote.1
 • Mirai
Software

- Individual attack scripts – pastebin, hackfroums, etc.
- booter scripts – basic, sometimes control panel
- More advanced - C&C server and separate agent for the drones
 - dirt jumper
 - black energy (general RAT)
- Most kits are in the $100-600 range (if not free)
- Open source
Booters: MO and TTPs
Booters

Booter services
- Gained popularity over the past 4 years
- Mostly reflected attack (no need for additional infrastructure)
- Mostly computer gaming industry related
 - Short, bursty attacks
 - Use rudimentary scripts
- Fairly inexpensive
Variety of packages

Our license for life

<table>
<thead>
<tr>
<th>License name</th>
<th>Time in seconds</th>
<th>Deadline</th>
<th>Price</th>
<th>PayPal & Bitcoin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic</td>
<td>600</td>
<td>For life</td>
<td>9 €</td>
<td>🛒 Pay</td>
</tr>
<tr>
<td>Intermediate</td>
<td>1200</td>
<td>For life</td>
<td>12 €</td>
<td>🛒 Pay</td>
</tr>
<tr>
<td>Moving forward</td>
<td>2400</td>
<td>For life</td>
<td>19 €</td>
<td>🛒 Pay</td>
</tr>
<tr>
<td>Expert</td>
<td>3600</td>
<td>For life</td>
<td>24 €</td>
<td>🛒 Pay</td>
</tr>
<tr>
<td>Titans</td>
<td>7200</td>
<td>For life</td>
<td>39 €</td>
<td>🛒 Pay</td>
</tr>
<tr>
<td>Luxurious</td>
<td>€53.00 / Unlimited</td>
<td>For life</td>
<td>53 €</td>
<td>🛒 Pay</td>
</tr>
<tr>
<td>Ultimate</td>
<td>€65.00 / Unlimited</td>
<td>For life</td>
<td>65 €</td>
<td>🛒 Pay</td>
</tr>
<tr>
<td>Era</td>
<td>€80.00 / Unlimited</td>
<td>For life</td>
<td>80 €</td>
<td>🛒 Pay</td>
</tr>
</tbody>
</table>
Functionality

- Fancy dashboard
- Different attack vectors
- Network tools, etc.
Code reuse

- Individual attack scripts reused widely
- Limited set of kits (control panel)
- Also some operators set multiple fronts
Bottom line

Service:
• $15-250/month

DIY:
• Kit - $100-600 (one time)
• Hosting - $100-250/month
• Time spent on forums
Questions
Attack Surface
Overview

- Attack Surface
- Correlation between layer and type of attack
Network Layers – OSI vs Internet Model
Physical and Data-link Layers

- Cut cables
- Jamming
- Power surge
- EMP
- MAC Spoofing
- MAC flood
- Wi-Fi Deauthentication
Network Layer

• Floods (ICMP)

• Teardrop (overlapping IP segments)
Transport Layer

- SYN Flood
- RST Flood
- FIN Flood
- You name it...
- Window size 0 (looks like Slowloris)
- Connect attack
- LAND (same IP as src/dst)
Session Layer

• Slowloris
• HTTP POST attack
• Sending data to a port with no NL/CR characters in it
Presentation Layer

- Expensive queries (repeated many times)
- XML Attacks (Billion laughs attack)

```xml
<!DOCTYPE lolz [
  <!ENTITY lol1 "&lol2;">
  <!ENTITY lol2 "&lol1;">
]

<lolz>&lol1;</lolz>
```
Application Layer

• Depends on the application
• Black fax

• Often confused with Internet Model Application Layer attacks.
Attack summary by layer

- Note the dependency between layer and compute power needed to mitigate
Questions
Network Technology
Overview

- Sockets
- TCP state machine
- Three way handshake
- Use of some basic tools
- DNS Resolution
Sockets
Sockets

- Socket is an abstraction allowing an application to bind to a transport layer address (aka network port)
- It is described by a finite-state machine
- Throughout its life time it goes through a number of states
Socket States

• Here are some of the socket states of importance:
 • CLOSED – start state
 • LISTEN – waiting for a connection request
 • SYN_SENT – initiated a connection
 • SYN_RECV – received request still negotiating
 • ESTABLISHED – connection working OK
 • CLOSE_WAIT – waiting for the application to wrap up
 • FIN-WAIT1/2, CLOSING, LAST_ACK – one side closed the connection
 • TIME-WAIT – waiting for 2 x MSL
As described in RFC 791:
Opening a TCP connection

Let’s review the sequence for opening a connection

1. Server side opens a port by changing to LISTEN state.
2. Client sends a SYN packet and changes state to SYN_SENT.
3. Server responds with SYN/ACK and changes state to SYN_RECV. For the client this is ESTABLISHED connection.
4. Client has to ACK and this completes the handshake for the server.
5. Packet exchange continues; both parties are in ESTABLISHED state.
Closing a TCP connection

Sequence for closing a connection

- Both parties are in ESTABLISHED state
- One side initiates closing by sending a FIN packet and changes state to FIN_WAIT1; this changes the other side to CLOSE_WAIT
- It responds with ACK and this closes one side of the connection
- We are observing a half closed connection
- The other side closes the connection by sending FIN
- And the first side ACKs
- The first side goes into a wait for 2 times the MSL time (by default 60 seconds)
Use of netstat for troubleshooting

```
[root@knight ghost]# netstat -nap | grep 12345
tcp        0      0 0.0.0.0:12345       0.0.0.0:*              LISTEN   2903/nc
[root@knight ghost]# netstat -nap | grep 12345
tcp        0      0 127.0.0.1:12345     127.0.0.1:49188        ESTABLISHED 2903/nc
[root@knight ghost]# netstat -nap | grep 12345
tcp        0      0 127.0.0.1:49188     127.0.0.1:12345        TIME_WAIT -
[root@knight ghost]# netstat -nap | grep 12345
```

Questions
Attacks
Overview

• SYN Flood
• SYN Cookies
• Socket Exhaustion (socket reuse)
• Sloworis
SYN Flood
What is a SYN flood?

• What is a 3-way handshake?

“I want to talk to you”
Flags: SYN
SEQ: 101; ACK: <not used>

“Are you real?”
Flags: SYN, ACK
SEQ: 550; ACK: 101+1

“Of course I am!”
Flags: ACK, ACK
SEQ: 101+1; ACK: 550+1
SYN flood

- Exploits the limited slots for pending connections
- Overloads them

```
“Hello”
Flags: SYN
SEQ: 101; ACK: <not used>
```
```
“Hello”
Flags: SYN
SEQ: 431; ACK: <not used>
```
```
“Hello”
Flags: SYN
SEQ: 583; ACK: <not used>
```
```
“Hello”
Flags: SYN
SEQ: 392; ACK: <not used>
```
```
“Hello”
Flags: SYN
SEQ: 938; ACK: <not used>
```
```
“Hello”
Flags: SYN
SEQ: 783; ACK: <not used>
```
Listen backlog queue

• Connection queue semantics
 • BSD: behaves like one queue
 • Linux: two queues. In kernel 2.2 the backlog queue holds also holds ESTABLISHED connections which have not been “accepted” by the application.

• Size
 • /proc/sys/net/ipv4/tcp_max_syn_backlog – limits the kernel size of the table per socket (4.18.0 defaults to 128)
 • /proc/sys/net/core/somaxconn – limits the backlog argument in the listen() syscall (default 128)

• Tuning up helps with busy servers
Let’s go shopping

• How much bandwidth does one need to send to saturate the queue?
 • Backlog queue size?
 • for this example, assume 1000
 • Backlog SYNRECV timeout?
 • 60 seconds
 • SYN packet size?
 • 84 bytes (64 bytes + IPG)

• If you are still here (and didn’t go shopping):
 • 1000 pkts per minute (~16 pps)
 • 1.4kbps

• What’s the effect on lowering the timeout?
SYN flood through the eyes of netstat

- **netstat --anp**

<table>
<thead>
<tr>
<th>Proto</th>
<th>Recv-Q</th>
<th>Send-Q</th>
<th>Local Address</th>
<th>Foreign Address</th>
<th>State</th>
<th>PID/Program name</th>
</tr>
</thead>
<tbody>
<tr>
<td>tcp</td>
<td>0</td>
<td>0</td>
<td>0.0.0.0:111</td>
<td>0.0.0.0:*</td>
<td>LISTEN</td>
<td>1339/rpcbind</td>
</tr>
<tr>
<td>tcp</td>
<td>0</td>
<td>0</td>
<td>0.0.0.0:33586</td>
<td>0.0.0.0:*</td>
<td>LISTEN</td>
<td>1395/rpc.statd</td>
</tr>
<tr>
<td>tcp</td>
<td>0</td>
<td>0</td>
<td>192.168.122.1:53</td>
<td>0.0.0.0:*</td>
<td>LISTEN</td>
<td>1962/dnsmasq</td>
</tr>
<tr>
<td>tcp</td>
<td>0</td>
<td>0</td>
<td>127.0.0.1:631</td>
<td>0.0.0.0:*</td>
<td>LISTEN</td>
<td>1586/cupsd</td>
</tr>
<tr>
<td>tcp</td>
<td>0</td>
<td>0</td>
<td>127.0.0.1:25</td>
<td>0.0.0.0:*</td>
<td>LISTEN</td>
<td>2703/sendmail: acce</td>
</tr>
<tr>
<td>tcp</td>
<td>0</td>
<td>0</td>
<td>127.0.0.1:25</td>
<td>127.0.0.1:49718</td>
<td>SYN_RECV</td>
<td>-</td>
</tr>
<tr>
<td>tcp</td>
<td>0</td>
<td>0</td>
<td>127.0.0.1:25</td>
<td>127.0.0.1:49717</td>
<td>SYN_RECV</td>
<td>-</td>
</tr>
<tr>
<td>tcp</td>
<td>0</td>
<td>0</td>
<td>127.0.0.1:25</td>
<td>127.0.0.1:49722</td>
<td>SYN_RECV</td>
<td>-</td>
</tr>
<tr>
<td>tcp</td>
<td>0</td>
<td>0</td>
<td>127.0.0.1:25</td>
<td>127.0.0.1:49720</td>
<td>SYN_RECV</td>
<td>-</td>
</tr>
<tr>
<td>tcp</td>
<td>0</td>
<td>0</td>
<td>127.0.0.1:25</td>
<td>127.0.0.1:49719</td>
<td>SYN_RECV</td>
<td>-</td>
</tr>
<tr>
<td>tcp</td>
<td>0</td>
<td>0</td>
<td>127.0.0.1:25</td>
<td>127.0.0.1:49721</td>
<td>SYN_RECV</td>
<td>-</td>
</tr>
<tr>
<td>tcp</td>
<td>0</td>
<td>0</td>
<td>127.0.0.1:25</td>
<td>127.0.0.1:49716</td>
<td>SYN_RECV</td>
<td>-</td>
</tr>
</tbody>
</table>
SYN on the wire

- Attacker
- Random IP address/port
- Target
 - 127.0.0.1:80
- Pay attention to the SYN flag!
What is a SYN cookie?

• Preserves information in ISN (initial sequence number)

• SYN Cookie:

 Timestamp % 32 + MSS + 24-bit hash

• Components of 24-bit hash:

 • server IP address
 • server port number
 • client IP address
 • client port
 • timestamp >> 6 (64 sec resolution)
Questions
Socket Exhaustion
Socket Exhaustion

• What is a socket?
• What is Maximum Segment Lifetime (MSL)?
 • How old is the Internet?
 • What is Time To Live (TTL) measured in?
• What is socket exhaustion?
Socket Exhaustion through the eyes of netstat

- Socket exhaustion would look like this:

Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
<table>
<thead>
<tr>
<th>Proto</th>
<th>Recv-Q</th>
<th>Send-Q</th>
<th>Local Address</th>
<th>Foreign Address</th>
<th>State</th>
<th>PID/Program name</th>
</tr>
</thead>
<tbody>
<tr>
<td>tcp</td>
<td>0</td>
<td>0</td>
<td>0.0.0.0:111</td>
<td>0.0.0.0:*</td>
<td>LISTEN</td>
<td>1339/rpcbind</td>
</tr>
<tr>
<td>tcp</td>
<td>0</td>
<td>0</td>
<td>0.0.0.0:33586</td>
<td>0.0.0.0:*</td>
<td>LISTEN</td>
<td>1395/rpc.statd</td>
</tr>
<tr>
<td>tcp</td>
<td>0</td>
<td>0</td>
<td>192.168.122.1:53</td>
<td>0.0.0.0:*</td>
<td>LISTEN</td>
<td>1962/dnsmasq</td>
</tr>
<tr>
<td>tcp</td>
<td>0</td>
<td>0</td>
<td>127.0.0.1:631</td>
<td>0.0.0.0:*</td>
<td>LISTEN</td>
<td>1586/cupsd</td>
</tr>
<tr>
<td>tcp</td>
<td>0</td>
<td>0</td>
<td>127.0.0.1:25</td>
<td>0.0.0.0:*</td>
<td>LISTEN</td>
<td>2703/sendmail: acce</td>
</tr>
<tr>
<td>tcp</td>
<td>0</td>
<td>0</td>
<td>0.0.0.0:1241</td>
<td>0.0.0.0:*</td>
<td>LISTEN</td>
<td>1851/nessusd: waiti</td>
</tr>
<tr>
<td>tcp</td>
<td>0</td>
<td>0</td>
<td>127.0.0.1:25</td>
<td>127.0.0.1:60365</td>
<td>TIME_WAIT</td>
<td></td>
</tr>
<tr>
<td>tcp</td>
<td>0</td>
<td>0</td>
<td>127.0.0.1:25</td>
<td>127.0.0.1:60240</td>
<td>TIME_WAIT</td>
<td></td>
</tr>
<tr>
<td>tcp</td>
<td>0</td>
<td>0</td>
<td>127.0.0.1:25</td>
<td>127.0.0.1:60861</td>
<td>TIME_WAIT</td>
<td></td>
</tr>
<tr>
<td>tcp</td>
<td>0</td>
<td>0</td>
<td>127.0.0.1:25</td>
<td>127.0.0.1:60483</td>
<td>TIME_WAIT</td>
<td></td>
</tr>
<tr>
<td>tcp</td>
<td>0</td>
<td>0</td>
<td>127.0.0.1:25</td>
<td>127.0.0.1:60265</td>
<td>TIME_WAIT</td>
<td></td>
</tr>
<tr>
<td>tcp</td>
<td>0</td>
<td>0</td>
<td>127.0.0.1:25</td>
<td>127.0.0.1:60618</td>
<td>TIME_WAIT</td>
<td></td>
</tr>
<tr>
<td>tcp</td>
<td>0</td>
<td>0</td>
<td>127.0.0.1:25</td>
<td>127.0.0.1:60407</td>
<td>TIME_WAIT</td>
<td></td>
</tr>
<tr>
<td>tcp</td>
<td>0</td>
<td>0</td>
<td>127.0.0.1:25</td>
<td>127.0.0.1:60423</td>
<td>TIME_WAIT</td>
<td></td>
</tr>
<tr>
<td>tcp</td>
<td>0</td>
<td>0</td>
<td>127.0.0.1:25</td>
<td>127.0.0.1:60211</td>
<td>TIME_WAIT</td>
<td></td>
</tr>
<tr>
<td>tcp</td>
<td>0</td>
<td>0</td>
<td>127.0.0.1:25</td>
<td>127.0.0.1:60467</td>
<td>TIME_WAIT</td>
<td></td>
</tr>
<tr>
<td>tcp</td>
<td>0</td>
<td>0</td>
<td>127.0.0.1:25</td>
<td>127.0.0.1:60213</td>
<td>TIME_WAIT</td>
<td></td>
</tr>
</tbody>
</table>
Questions
Slowloris
Connection handling architectures

• Process based connection handling?
 • Think “Apache”

• Event based connection handling?
 • Think “nginx”
Process oriented explained

- Listener opens sockets
- New connection comes in
- Process forks; separate process handles the connection
- New connection comes in
- Process forks; separate process handles the connection
- ...and so on...
- ...usually with up to 500-600 concurrent process copies
Apache web server (simplified)

• Few child processes listen on a socket
• A new connection comes in...
• ...and one of them takes it
• Another new connection comes in...
• ...and the next one takes it.
• Pool is exhausted; new processes are spawned (forked)
• ...and so on...
• Up to about 500-600
• The initial set is defined by StartServers
Nginx (simplified)

- Master Process controls logistics
- Support processes (cache management)
- Worker processes process connections
- One or more...
 ...one per core
- Each worker can handle many sockets concurrently
- A new connection comes in
 ...and is established;
 ...and so on...
Slowloris

- Exploits the process based model but opening a number of concurrent connections and holds them open for as long as possible with the least amount of bandwidth possible.
Slowloris request

- Request:
 send: GET /pki/crl/products/WinPCA.crl HTTP/1.1
 wait...
 send: Cache-Control: max-age = 900
 wait...
 send: Connection: Keep-Alive
 wait...
 send: Accept: */*
 wait...
 send: If-Modified-Since: Thu, 06 Aug 2015 05:00:26 GMT
 wait...
 send: User-Agent: Microsoft-CryptoAPI/6.1
 wait...
 send: Host: crl.microsoft.com
Slowloris illustrated

• The client opens a connection and sends a request...
 ...then another...
 ...and another...
 ...and so on.
 ...and waits...
 ...and sends the next header
 ...and so for each connection
 ...and so on...
Slowloris mitigation

• Change of the software architecture

• Use of event driven reverse proxy to protect the server (like nginx)

• Dedicated hardware devices
Questions
Reflection and amplification attacks
Two different terms

- Reflection using an intermediary to deliver the attack traffic
- Amplification ability to deliver larger response than the query traffic
Reflection
Reflection attacks

• Attacks where the an unwilling intermediary is used to deliver the attack traffic

• The attacker would normally send a packet with a forged source IP address to an intermediary. The forged source address is going to be the one of the target. The intermediary will respond and this packet will go to the target instead of the attacker
What is reflection(ed) attack?

- Attacks where the an unwilling intermediary is used to deliver the attack traffic
- Attacker sends a packet with a spoofed source IP set to the victim’s
- Reflectors respond to the victim

```
S: 191.236.103.221 D: 3.3.3.3
Size: 64 bytes

S: 3.3.3.3 D: 191.236.103.221
Size: 512 bytes
```
Reflector types

The ones that are of interest are:

- DNS
- NTP
- SSDP
- SNMP
- RPC (reported lately but not really large)
Amplification
What is amplification attack?

- Asymmetric attack where response is much larger than the original query.
Amplifiers types

• The ones that are of interest and provide amplifications are:
 • DNS
 • SSDP
 • NTP
 • SNMP

- Amplification factors:
 https://www.us-cert.gov/ncas/alerts/TA14-017A
Amplification quotients

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Bandwidth Amplification Factor</th>
<th>Vulnerable Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS</td>
<td>28 to 54</td>
<td>Multiple</td>
</tr>
<tr>
<td>NTP</td>
<td>556.9</td>
<td>Multiple</td>
</tr>
<tr>
<td>SNMPv2</td>
<td>6.3</td>
<td>GetBulk request</td>
</tr>
<tr>
<td>NetBIOS</td>
<td>3.8</td>
<td>Name resolution</td>
</tr>
<tr>
<td>SSDP</td>
<td>30.8</td>
<td>SEARCH request</td>
</tr>
<tr>
<td>CharGEN</td>
<td>358.8</td>
<td>Character generation request</td>
</tr>
<tr>
<td>QOTD</td>
<td>140.3</td>
<td>Quote request</td>
</tr>
<tr>
<td>BitTorrent</td>
<td>3.8</td>
<td>File search</td>
</tr>
<tr>
<td>Kad</td>
<td>16.3</td>
<td>Peer list exchange</td>
</tr>
<tr>
<td>Quake Network Protocol</td>
<td>63.9</td>
<td>Server info exchange</td>
</tr>
<tr>
<td>Steam Protocol</td>
<td>5.5</td>
<td>Server info exchange</td>
</tr>
</tbody>
</table>

- Source: US-CERT: https://www.us-cert.gov/ncas/alerts/TA14-017A
Questions
DNS Reflection
What is DNS reflection attack?

- What happens if an attacker forges the victim address as its source?

 - What is the IP for www.cisco.com?

 - S: 191.236.103.221 D: 3.3.3.3
 - www.cisco.com is at 5.5.5.5

 - ...the reflected traffic goes to the target server

 - ...and what if hundreds of misconfigured open DNS resolvers are used?
Consider this query

• Triggered by something like:

 \texttt{dig ANY isc.org @3.3.3.3}

• Example:

 \texttt{~$ dig ANY isc.org @172.20.1.1 \# My home lab}

 Flip over for thes answer
Consider this (cont’d)

ghostwood@sgw:~$ dig ANY isc.org @172.20.1.1
;; ANSWER SECTION:
isc.org. 481 IN RSRSIG 257 8 7200 2013021131450 20130521130130 12892 isc.org.

isc.org. 5725 IN A 149.20.64.42
isc.org. 5725 IN DNSKEY 5 2 7200 20130620130130 20130521130130 50012 isc.org.

isc.org. 5725 IN DNSKEY 257 3 5 BEAAAAOHQDBrBqLbphq2wQUjEQ5h4DtkUxkoMvFu2hWDLMvoOMRtXgrhhCeFvAZih7yJiHf8ZGfW6hd38hXG/xyiYC06Krbpbojwxx8YMXA5/kA+u50VILBZ1Rk6KfbsYVFv/QsKr5dNbcPlw+U8e8ZrMo20j1SUYaq347c8B1xzMmx7JLpAOdd3CBk3jA254T515sNIMcwssB8+2+2E63/jZrQz
Bkj/0BrN/9Bexipkis3hRztLx3lS3fTy7R09xUx5Wc7+xaq7+ysyLjKO0eSD59275Dmsn2eA0FkTQpw6LxExeG2w+jxm3oVUJUgFe/ruEc/bb yBNsO70aEFtD

isc.org. 5725 IN DNSKEY 256 3 5 BQEEAAAABwHu9cem0BU0JQT07C/a3McR6hMaufljs1dfG/inaJpYv7vH XTrAOm/MeKp+/x6eT4QLru0KoZvkZfj818yjaFTw2OM/It8Bfh/hl2lmCft2Ot3nMfeqYtvjPnY7dWghyY4sVh7VVEGm95809nfl79532Qeklxh x8pXWdeAaRU=

a.root-servers.net. 297269 IN A 198.41.0.4
a.root-servers.net. 415890 IN AAAA 2001:503:ba3e::2:30
b.root-servers.net. 298007 IN A 192.228.79.201
c.root-servers.net. 297373 IN A 192.33.4.12
d.root-servers.net. 297555 IN A 199.7.91.13
d.root-servers.net. 417805 IN AAAA 2001:500:2d-
Reflection and Amplification

What is ANY isc.org

S: 192.168.103.221 D: 3.3.3.3

What is ANY isc.org

S: 3.3.3.3 D: 192.168.103.221
On the wire

<table>
<thead>
<tr>
<th>127.5.5.5</th>
<th>127.0.0.1</th>
<th>DNS</th>
<th>70 Standard query 0x4918 A test.com</th>
</tr>
</thead>
<tbody>
<tr>
<td>127.5.5.5</td>
<td>127.0.0.1</td>
<td>DNS</td>
<td>70 Standard query 0x4918 A test.com</td>
</tr>
<tr>
<td>127.5.5.5</td>
<td>127.0.0.1</td>
<td>DNS</td>
<td>70 Standard query 0x4918 A test.com</td>
</tr>
<tr>
<td>127.5.5.5</td>
<td>127.0.0.1</td>
<td>DNS</td>
<td>70 Standard query 0x4918 A test.com</td>
</tr>
<tr>
<td>127.0.0.1</td>
<td>127.5.5.5</td>
<td>DNS</td>
<td>153 Standard query response 0x4918 A 192.168.1.1</td>
</tr>
<tr>
<td>127.5.5.5</td>
<td>127.0.0.1</td>
<td>ICMP</td>
<td>181 Destination unreachable (Port unreachable)</td>
</tr>
</tbody>
</table>

• Victim is 127.5.5.5
• Attacker spoofs traffic as if it comes from 127.5.5.5
• Reflector (127.0.0.1) responds to the query to the victim
• BACK SCATTER
 Notice the victim is responding with port unreachable because there is nothing running on that UDP port. This is called back-scatter
On the wire (details)

- **Victim is 127.5.5.5**
- **Attack traffic from 127.5.5.5; port 49249**
- **To reflector 127.0.0.1; port 53**
On the wire (details)

- Reflector (127.0.0.1) responds to the query to the victim (127.5.5.5)
- Note the number of records in the answer
Questions
Backscatter
Backscatter

• Traffic that is a byproduct of the attack

• Why is that interesting?
 • It is important to distinguish between the actual attack traffic and unintended traffic sent by the victim
 • Imagine a SYN flood against a “victim” protected by a major scrubbing provider spoofed from IP address
 • What is the traffic to X going to look like?
SYN Flood Backscatter?

- Cookie flood 😊

```
10.1.1.10

“I want to talk to you”
Flags: SYN

“Are you real?”
Flags: SYN, ACK (w/ SYN Cookie)

3.3.3.3

191.236.103.221

“I want to talk to you”
Flags: SYN

“Are you real?”
Flags: SYN, ACK (w/ SYN Cookie)

“Are you real?”
Flags: SYN, ACK (w/ SYN Cookie)
```
Are you a reflector? (Backscatter)

- In some cases return traffic/backscatter
Back scatter on the wire

- The victim (127.5.5.5) sends an ICMP port unreachable to the reflector (127.0.0.1)
Cache busting
(back to DNS)
DNS resolution (repeat)

• Let’s focus on the number of requests per second

• User talks to recursive resolver, which:
 • Caches answers
 • Answers a large number of requests

• The recursive talks to different level of authoritative servers, which:
 • Do not cache answers (they are auths)
 • Relatively lower number of queries

• Consider caching and authoritative capacity
What cache busting?

• Attacker sends a query to recursive/reflector
• Recursive forwards the query
• And so on...
• Imagine one more recursive resolver
• Rinse and repeat...
Questions
Network Time Protocol (NTP)
NTP reflection attack

- Stratum servers
- NTP queries

- MONLIST command
 - provides a list of clients that have time readings
NTP server configuration

• Access lists

• NTP authentication

• Disable the MONLIST command

• Useful hints:
 http://www.team-cymru.org/secure-ntp-template.html

• List of open NTP reflectors:
 http://openntpproject.org/
Reflection attacks summary and resources

• Summary
 • Protocols that allow spoofing of the source of a query
 • Protocols that provide amplification – the query is much smaller than the response
Questions
Mitigation Strategies
Overview

• Risk pyramid
• Value of being online/Outage costs
• Mitigation strategies
Risk Pyramid

Intensity

Number of attackers/attacks

Resources
The cost of a minute?

- How much does a minute of outage cost to your business?
- Are there other costs associated with it? Reputation?
- Are you in a risk category?
- How much is executive management willing to spend to stay up?
- Are there reasons you need to mitigate on-site vs offsite? Latency?
Mitigation

Different approaches:
- Do it yourself (DIY)
- Outsource/service
 - On demand
 - Always on
- Hybrid
Do it Yourself (On Premise)
DIY: Considerations

• Network capacity: bandwidth
• Hardware capacity: packet rates, inspecting headers and content?
• One time cost (refresh every 3-4 years)
• Depending on attacks size can be in $100,000s
DIY: Benefits

• Very low latency
• Can be application specific (non-http, gaming industry)
• Better control of the mitigation
• If inspecting TLS traffic keeps the keys in the company
DIY: Drawbacks

Network capacity:
• Fluctuates
• How much do you over provision? Double, triple, ten times?

• Need to procure
 • bandwidth - monthly recurring - expensive, adds up
 • compute and network hardware
 • qualified personnel – hard to find; expensive; hard to retain
DIY: Bottom line

- traffic – 10GBps = $2,000/mo (NA)
- colocation space - $400/mo
- power – depends on equipment and location
- equipment – min $20,000 per 10GBps port
- personnel – go figure… 😊

…and you need them in many locations, with multiple per location.
DIY: Conclusions

• At present DDoS attacks are at a very large scale but DIY is not easy to scale for small and medium networks

• Leverages economy of scale – requires a large infrastructure

• Infrastructure is very expensive to build and maintain

• Requires significant amount of know-how

• Unless hosting a very large site it’s better left to the professionals
External service

• DDoS mitigation service providers and CDNs

• Pricing:
 • based on size of attack
 • based on clean traffic

• Operating model:
 • on demand
 • always on
On Demand DDoS

- Target: detect and signal the mitigation provider
- Mitigation provider: Inject BGP routes
- Traffic is redirected to the mitigation provider
- Clean traffic is delivered to the origin server (usually over GRE tunnel)
On Demand Mitigation - benefits

- Scales up very easily
- Since most applications are HTTP/S based, it is compatible with them
- Easier to deploy
- May leave the target vulnerable to bypass
On Demand Mitigation - drawbacks

- Takes time between the site being attacked until it switches to the service provider
- Potential outages
- Difficult to establish TLS
- May have increased latency
- Target may still be exposed
- Detection is not Application Aware
- GRE Tunnels create complexity
Always On Mitigation

- Permanently serve the customer space
 - Advertise IP address space
 - Use shared delivery infrastructure (CDN)
- Traffic is always flowing through the mitigation systems
- Usually combined with services like CDN, which further increases website performance (even during peace time)
Always On DDoS Mitigation (advertise IP space)
Always On DDoS Mitigation (CDN)
Always On Mitigation - benefits

- Scales up very well during volumetric attacks
- Mitigation can be virtually instantaneous
 No moving parts during the attack
- Can protect most applications
- Once it’s on there are no moving parts
- Very hard to bypass
- (proxy/caching) If deployed properly, it may improve website performance
- Cost depends on the website traffic (not the attack)
Always On Mitigation - drawbacks

- Can increase latency
- Challenges around TLS
- Stale caches
- May be much more expensive
Hybrid

• Combination of DIY and service providers
• Helps customers manage their risk profile in a more flexible way

Benefits:
• Provides protection against large scale events without the added service cost
• Allows for escalating response postures and risk/finance management
• Overall most of the benefits of On Demand

Drawbacks:
• Increased complexity
• Requires skilled personnel
• May have interoperability issues
DDoS mitigation service providers

• It is an ongoing expense
• Depending on the business model it can be big or small
• Hides the complexities of managing the problem
• May introduce latencies, but also may accelerate content if used properly
DDoS mitigation svc providers – bottom line

- Depends on the exact setup
 - in CDN cases usually depends on the size of normal traffic and not the size of the attack
 - varied: $50/month – thousands...
DDoS mitigation service providers

Pros
- Hides the complexities of managing the problem
- May accelerate content delivery
- May be much cheaper, especially as attack sizes grow but are not common
- Cost: much, much lower than DIY

Cons
- May not be applicable to all applications - gaming
- May increase latency
- May end up expensive
- Third party sees the users (and maybe the content) - privacy, security
- Issues with stale cache
Questions
Working Together
Overview

• Good internet citizenship
• Mitigation techniques
• Resources
Good Internet citizenship
Are you noticing the imbalance?

Defend yourself

• Anycast (DNS)
• Some form of IPS/DDoS mitigation gear

• Lots of money

Defend the Internet

• Rate-limiting
• BCP38/140 (outbound filtering) source address validation
• Securely configured authoritative DNS servers
• No open resolvers

• Somewhat cheap
What’s the point I’m trying to make?

• It’s not feasible to mitigate those attacks single handedly
• We need cooperation
• Companies need to start including “defending the Internet from themselves” as a part of their budget – not only “defending themselves from the Internet”
Summary

• Discuss what DDoS is, general concepts, adversaries, etc.

• Went through a networking technology overview, in particular the OSI layers, sockets and their states, tools to inquire system state or capture and review network traffic

• Dove into specifics what attack surface the different layers offer

• Discussed different attack types

• Terminology

• Tools
Thank you!

krassi@krassi.biz
Copyright © by Forum of Incident Response and Security Teams, Inc.

FIRST.Org is name under which Forum of Incident Response and Security Teams, Inc. conducts business.

This training material is licensed under Creative Commons Attribution-Non-Commercial-Share-Alike 4.0 (CC BY-NC-SA 4.0)

FIRST.Org makes no representation, express or implied, with regard to the accuracy of the information contained in this material and cannot accept any legal responsibility or liability for any errors or omissions that may be made.

All trademarks are property of their respective owners.

Permissions beyond the scope of this license may be available at first-licensing@first.org