Towards Hyperscale
High Performance Computing
with RDMA

NANOG 76
2019.06.12

Omar Cardona - Microsoft



Outline

Drivers for making RDMA and HPC a critical part of modern cloud networks
Trends and directions for network storage (SCM) and CPUs (GPUs, custom for HPC)
RDMA fundamentals and Fabric impacts

What are some problems with today’s solution that keep it from scaling?
* Go-back N makes packet loss a huge penalty
* Configuring a lossless network is a challenge
* PFC and Hol Blocking problems
* Delays in end-to-end control loop
* Mixing flows with different congestion controllers (TCP & RoCE)
* Traffic Class separation
* Persistent memory need for RDMA

e Discussion



Current HPC/RDMA networks

“Future datacenters of all kinds will be built like

high performance computers”
-Nvidia CEO, Jensen Huang

e Traditional HPC runs over custom lossless technologies
e Infiniband - with L2 credit-based Flow Control

* Increasingly also runs over IP infrastructure
* iIWARP - RDMA over HW Offload TCP
e RoCEv2 — Infiniband Transport over Converged Ethernet

* Benefits applicable via integration in:
* artificial intelligence
* machine learning
* data analytics
* data science workloads
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http://www.roceinitiative.org/

What does it mean to be Hyperscale

Architecture’s ability to scale with

increasing demand.
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Common scale infrastructure
Dynamic and automated provisioning
Diverse workload mix

Service Level Agreements
* Consistency, Low-latency, high-throughput

HYPERSCALE DESIGN PRINCIPLES
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https://en.wikipedia.org/wiki/Hyperscale

Storage and CPU create network pressure

Inter-node communication bottleneck

4

Communication LAT >50% of the total Wait time for GPU communication >50%
storage access LAT. of the job completion time (JCT).




Remote Storage Class Memory (SCM)

SCM @ usec access

Requires <= usec network access
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Packet loss stalls HPC Applications

Single processor perspective:

The key application of computing cloud: distributed HPC network loss -> workload interruption
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Packet loss stalls storage

Inefficiency in storage resources

Direct Storage
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- Storage cloud utilizes the principle of statistical
multiplexing to improve storage resource
utilization

Lossy Network
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Storage cloud based on lossy network will cause
access delay due to network congestion, packet
loss, and jitter, which seriously affects the effect of
storage cloud.



RDMA vs Traditional Messaging
Applicatior

Socket Socket

TCP UDP Copy TCP UDP
Socket -
Operation
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NIC Hardware
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Kernel
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RDMA eliminates: Context Switch, Intermediate Data Copies, and Protocol Processing



RDMA is an essential protocol for the Al era

» Traditionally deployed in custom,
closed and expensive InfiniBand
networks

1 s

I RDMA over InfiniBand or
Ethernet

« Adapted to Ethernet networks for
better scale, lower cost and

- . manageability.
LTI -
TCP disadvantages RDMA advantages : : : :
> Three copy operations, resulting in a > Fast startup, maximizing the bandwidth * N etWO rk IN novatl on is prepa Il ng
long latency usage H
> CPU consumed by traffic: 1 Hz perbit > One copy operation (DMA), effectively RD MA for Wld e Scale use

reducing the kernel latency

» Minimal <5% CPU resources consumed
for Kernel transfers.

» ~0 kernel CPU usage for Userspace
RDMA

RDMA advantages are most effective in reduced latency and minimal cycles/byte costs



RoCEv2 and iWARP are RDMA over Ethernet

Hardware Software

Physical

Blue content defined by IBTA

RDMA Applications

RDMA API (Verbs)

RDMA Software Stack
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RoCEv2 vs InfiniBand:

* Eliminates IB fabric req

* Minimal Congestion Control Capability

InfiniBand
Transport Protocol

Ethernet
Link Layer

RoCEv2

>
RoCEv2 vs RoCEv1:
* Support L3 Forwarding
iWARP * Requires Lossless L2 - DCB:PFC/ETS + ECN
Protocol

TCP
iIWARP vs RoCEv2:

* L4 based Congestion Control
* Uses standard TCPIP CC and SAK
* No L2 lossless req — DCB:ETS optional

Ethernet
Link Layer

iWARP

InfiniBand

Marketing spins of RoCEv2 vs iWARP:

w



Basic RoCEv2 Network: DCB:ETS / PFC + ECN
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Congest
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CNP(RoCEv2),
DCQCN, ECE(TCP))

ion
(e.g.

has:

* ECN - Explicit Congestion Notification
* End-to-end congestion control

* CNP - Congestion Notification Packet
* Feedback at connection Granularity
e Source quench @ Source Queue Pair

* PFC — Priority Flow Control

* Last resort to ensure lossless
environment

* May cause L2 congestion spreading if
improperly configured

* ETS - Enhanced Transmission Selection
* 802.1p COS, 8 classes
 Traffic Class Egress BW reservation



RoCE Congestion Control

No slow start to sample initial load

No Selective Acknowledgement for retransmits Sender Receiver
Uses Go-Back-N batch retransmits RDMA Send O
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Go-back-n window may cause fabric LIVELOCK if loss within window
IWARP uses standard TCP Selective Acknowledge + Granular Fast-Retransmits



https://en.wikipedia.org/wiki/Deadlock

ECN — Explicit Congestion Notification
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L
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PFC - Priority base Flow Control

Priority
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Receiver’s buffer

Destination Source Tag TAG Ethernet
Address Address | Protocol |D Type

DATA

CRC

Buffer almost full, sends
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ETS — Enhanced Transmission Selection

Due to different congestion control differences, TCP and RoCE may preempt each other on egress

* Egress BW reservation per 802.1p Traffic Classes (TC)
e Guaranteed minimum BW provided per TC

* Typically via Distributed Weighted Round Robing scheduling
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what we expect them transmit when
they mix together

LSO iy PIEEimpt Keigs Experiments show that traffic preemption occurs in different

traffic ratios.

Flow preemption problem will affect RDMA traffic transmission, which may result in degraded performance



Configuration Challenges

{ETS, PFC, ECN} parameter settings

* Alossless environment requires thresholds
 PFC and ECN buffer thresholds must be configured Tco

* Headroom, PFC-XOFF, OQ.Discard Tenant L3 ECN trigger

Source Quench

« ECN config must balance throughput and delay buffer thresholds
* Kmin, Kmax, Pmax

« ECN must trigger before PFC

 Emergency brakes!
» Fabric density scaling will require reconfiguration

L2 PEC trigger
L
Fast Brakes




You are here...
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The benchmark for HPC services is Job Completion Time (JCT)

OpenFOAM
Toolbox in an open source CFD applications that can simulate

ADVISORY COUNCIL

Performance Rating = Jobs/Day , Higher is better

— Complex fluid flows involving

» Chemical reactions OpenFOAM Performance

* Turbulence (Lid-driven Cavity) m Janus wmJupiter

o

« Heat transfer

Jupiter: 2-socket Intel ES-2680 @ 2.7GHz, 1600MHMz DIMMs, FODR 1B, 24 disks o
— Janus: Z-socket Intel X5670 @@ 2.93GHz, 1333MHz DIMMs, QDR 1B, 1 disk 93%

I
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OpGHVFOAM intel M OpenFOAM Performance
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— Solid dynamics

— Electromagnetics
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— The pricing of financial options
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2, The HPC Advisory Council specifies OpenFOAM performance benchmark. The only
one is Jobs/Day, which is essentially the Job Completion Time (JCT). No matter
measuring the difference in computing capability or network capability, this is the only
benchmark.

:';’W / NocTech SIS LI
(CWANES

1, OpenFOAM is a representative flow model of HPC, commonly used in fluid
computing; it is widely used because of its open sourse and it’s also used in
financial sector nowdays.

Source: 1),0penFOAM Performance Benchmark and Profiling, HPC Advisory Council, 2014.07; 2),Tackling Computational Fluid Dynamics in the Cloud, thePlatform, 2017.06; 3),The Need for Speed:
Benchmarking DL Workloads, Baidu, 2016.09; 4),Baidu Targets Deep Learning Scalability Challenges, thePlatform, 2017.02



The benchmark for NOF services is IOPS and tail latency

HOW DO WE MEASURE
PERFORMANCE?

The application/user
experience

> I10OPS — I/O's per second — a measure of the total I/0
operations (reads and writes) issued by the
application servers.

> Bandwidth — a measure of the data transfer rate, or
I/0 throughput, measured in bytes per second or
MegaBytes per second (MBPS).

> Latency — a measure of the time taken to complete
an I/O request, also known as response time. This is
frequently measured in milliseconds (one thousandth
of a second). Latency is introduced into the SAN at
many points, including the server and HBA, SAN
switching, and at the storage target(s) and media.

i Chelsio I, Mellanox
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1, From the perspective of the application (user) experience, NOF has clear performance
benchmark: I0PS, bandwidth (10 throughput), latency (10 response time);

latency latency

10ms

time

3.2, The tail latency (the completion time of the last 10
operation is the completion time of the entire task) is used to
measure the effectiveness of the throughput. This is also an
important indicator for academic and industrial evaluation. A
single task (Job) contains 20 10 accesses. If the single 10 delay
is greater than 10ms, the task fails. the left proportion of 10
delay less than 10ms is 96%, and the right one is 99.6%. The
overall effective 10 is 44% vs. 92%.

Source: 1),Next Generation Low Latency SAN, Qlogic@SNIA, 2015.04; 2),High performance NVMe over 40GbE iWARP, Intel & Chelsio, 2016.08;
3),Experiences with NVMe over Fabrics, Mellanox, 2017.03; 4),NVM Express Over Fabrics, Intel, 2015.03; 5),How to calculate your Disk 1/0 requirements, Microsoft, 2006.05



