
NANOG 76
HACKATHON RECAP

Syed Ahmed

Hackathon Recap

• 8th hackathon organized by NANOG
• Roughly had 50 participants
• Working in 10 different teams
• A lot of college students
• Bunch of first timers

Hackathon Goals

• Theme of hackathon was deploying active monitoring solution
• Extract topology info using some kind of automation
• Build network map using topology info
• Calculate all possible best path between end points
• Probe all possible best paths and account for failure as it happens

Experience

• Day started with explaining hack, lab topology
• We gave a quick of overview of tools and protocols that might help to

come up with solution
• It was interesting to notice a lot of participants have heard about

exabgp but never got chance to use it.
• Some of the participants have not heard about BGP – LS and SCAPY.
• Teams worked on hack from 10:30 to 6pm
• At 6pm each team presented their work
• Winner was decided based on voting

Experience (contd.)

• We also encourage participants to bring their own project
• Project that got resurrected from NANOG67. PiCon: Console servers

from RPi’s
• Winner of this hackathon are
• NetBuffs
• picon: Console servers from RPis

NANOG 76 HACKATHON

Team: NETBUFFS
University of Colorado Boulder

Thank you!

Problem Statement

• Build a system to automate network monitoring and failure detection

• Reduce time to identify network and application problems

• Automate reporting of the issue based on the detected failure

• Make use of open source tools

Hackathon Goals

• Extract topology information (number of all possible paths and hops)

• Active monitoring of network paths for failures

• Automatically report failures

Ø Below information of each link

was parsed from routes.txt:

• Neighbor ID

• Neighbor address

• Interface ID

• Interface Address

Parsing network configuration

Tools Used:

Ø Python

Ø Json

Ø ExaBGP

Topology

• Fetched all possible paths from end points

• Tool used: NetworkX

Receive
Probes

Create and
send Probes

Create a ticket
(Freshdesk)

Delay > threshold

Delay < threshold

Calculate Time
Difference (tdiff)

Workflow

Continuous monitoring

Probe creation

• Create IP GRE headers to trace
all the paths.

• Used SCAPY to create the
packets.

• Send the packet from source to
destination.

• Raised ticket and reported issue by integrating our script with a ticketing tool (Freshdesk)

Report Failure

Future Scope

• Scalability

Scale this to a higher number of nodes

• Traffic Engineering
Reroute traffic to different paths as per issue reported

• Visualization
Use data visualization tools such as Grafana to create dashboards

Takeaway

• Tools – Scapy, NetworkX, Python, ExaBGP

• Power of Network Programmability

• Planning

• Team work

• Don’t give up!

• Animesh Gupta (animesh.gupta@colorado.edu)

• Vibhum Chandorkar (vibhum.chandorkar@colorado.edu)

• Ameya Korgaonkar (ameya.korgaonkar@colorado.edu)

• Jose Dahlson Irenish Kumar (joir9977@colorado.edu)

• Apurva Bhiwapurkar (Apurva.bhiwapurkar@colorado.edu)

Team Members

THANK YOU J

Anand Oliver Ryan Taylor

NANOG76 Active Monitoring - Picon

Common issues:

● Islands of console capability

● Poor documentation

● Little or no proactive testing

● Pain when needed but not present

The Solution

Open-source self-discovery framework

● Commodity hardware

● Operate over untrusted network

● Single view of all capabilities

● Pick and implement advanced features over time

○ Concurrency, logging of console output, point-and-click access

Initial Work

● Python3, Flask, Bootstrap

● Webserver+API

○ API for registration, UI for device list

● Self-registering agent

○ Reported available TTY, interfaces, addresses

○ SSH to central server

Next Steps

● Additional Web and UI Capabilities (configurability)

● Programmatic console access

● In-browser console access

● Proxy agent for joining other consoles (Cisco, Digi, Avocent, etc)

● Physical configurations for deployment such as cases, custom FTDI
daughterboards, etc

Accomplishments

- Team gained valuable experience with:
- Websockets package and async workflows
- Interacting with tty via python serial module
- More features of Bootstrap and rusty jquery skills

- Various UI tweaks and progress
- Websockets POC is embedded in codebase

Take-aways

Flask and Bootstrap simplify non-developer progress

Websockets and asynchronous IO do not

Trying to implement the UI workflow will take much more planning

Less-technical takeaways from the challenge

Future Work/Next Steps

● Integrate Websockets with console access
● Basic authentication and privilege system
● Identify hardware for POC deployment
● Extend/abstract configuration
● Proxy agent

Thanks

https://github.com/piconsole/picon

Thanks Tesuto, Oracle and NANOG for this event

https://github.com/piconsole/picon

