
Powering Your
Automation:
A Single Source of Truth
TIM SCHREYACK

Network Automation: The Dream

Click the easy button and your
network is configured

Network Automation: The Reality

uVarying vendor support
uMultiple, competing frameworks
uNothing is ”off the shelf”
uThere is no easy button to create the

easy button

Automation vs Orchestration

Orchestration – codifying your processes
Automation – codifying your tasks

Orchestration is essentially stringing
together multiple chunks of automation.

Network Automation Overview

u Bootstrap
u Deploy new equipment with minimal human involvement

u Validate physical infrastructure

u Operations
u Easy button for standard MACs

u Device Configuration
u Template based versions of config in whole or in part

u Version Control
u Keep templates in Github

u Maintain branches or forks

u Require peer review prior to merging to Master

Automation Tools

u Automation Tools
u Ansible

u Puppet

u Salt

u NAPALM

u Orchestration tools
u Stackstorm

u RunDeck

Common Methods of Data
Input/Storage

And Still Not So Great:
Disconnected tools

IPAM
CMDB
DCIM

The Really Really Bad:
By hand

Statically defined

The Still Pretty Bad:
Spreadsheets

Email

A Better Way

A Single Source of Truth Database

Store ALL of your static data in one database
Link formerly disconnected pieces of data together

Maintain only one copy of the data, instead of multiples

What data to store?

u Physical and virtual Devices

u Links
u Data center info (sites, racks, pods, etc…)

u IP Addressing
u VLANs
u ASNs

u VRFs
u All your network and other infrastructure data

Advantages

Now we can make connections between data that was
formerly disconnected.

We can easily retrieve static values based on any number
of criteria.

We can create resource pools of physical and logical
items for use in our automation.

A Brief Aside

Pets vs cattle

But my resource is special – I need to
name it and pet it and love it forever.

No, no, it’s not. Treat all your resources as
cattle.

Source of Truth Examples

DIY
u Mongo
u Postgres
u Puppet DB/ Hiera
u YAML/JSON Files (easy, but limited)

Off the Shelf
u NetBox

Source of Truth Example Structure

A Practical Example

Deploy a network update to configure a new physical
server that will run web servers.

u Physical Requirements
u Switchports on two access switches
u Cabling requirements between server and switches

u Logical Requirements
u VLAN(s)
u Public, Internal, and Management IP Addresses
u FQDN(s)

A Practical Example (cont.)

From resource pools in your single source of truth, you can now
programmatically allocate almost everything:

Physical Resources
Rack Unit location

Switchports

Logical Resources
VLANs

IP Addresses

A Practical Example (cont.)

We can automatically generate:

DC Ops request to rack and cable server
Network configuration (switches/firewalls/etc...)

DNS Entries

A Practical Example (cont.)
Ansible & Python

Ansible

Short learning curve
Agentless

Open Source
Broad vendor support

Python

Most common language
(probably)
Readable

Supported in virtually all tools

A Practical Example (cont.)
Ansible & Python

Filter Plugins allow you to use Python to look up data from
the single source of truth in your Ansible templates.

ansible/plays/filter_plugins/my_functions.py

Create Python functions and classes to access your database.

A Practical Example (cont.)
Ansible & Python

switch_template.j2

interface Ethernet{{ fqdn | allocate_port(pool='webservers') }}

switchport access vlan {{ site | get_vlan(pool='webservers') }}

no shut

A Practical Example (cont.)
Ansible & Python

my_functions.py

def allocate_port(fqdn, pool):

<code>

return port_number

def get_vlan(site, pool):

<code>

return vlan_number

A Practical Example (cont.)
Ansible & Python

my_play.yml

- hosts: "web_switches"
connection: local
vars:

fqdn: "my_new_server.mydomain"
site: "my_site"

tasks:
- name: Generate Switch Configuration

template:
src: "my_template.j2"
dest: "my_switch_config.cfg"

A Practical Example (cont.)
Ansible & Python

my_switch_config.cfg

interface Ethernet12

switchport access vlan 101

no shut

A Practical Example (cont.)
Deploy Overview

u Ansible has broad network support

u Fairly easy to configure using plays to deploy configuration
u Take snapshot (depending on Network OS support)

u Deploy config (SSH, API)

u Save changes

u Rollback on failure

u Can use orchestration tools to handle deploying to multiple devices based
on events

Conclusion

u Network automation is becoming mainstream

u A paradigm shift is required to take full advantage of the possibilities
u Start by identifying key processes that can be automated

u Don't be afraid to rethink how those processes work
u Start writing code!

Questions

