
An Architecture of Highly Available Services
using Anycast and Segment Routing in IPv6

Andrew Wang
Principal Software Engineer 2
Comcast

in/AndrewKeWang

Who Am I
• Principal Software Engineer 2 at Comcast
• Past projects
- GDB
- Content based routing in ad hoc networks
- Key value stores
- Load balancing services

• Our team’s name is Occam, right now working on the
“Occam Gateway (OG)” project
- Peter Cline
- Daniel Jin
- Zeeshan Lakhani
- Chris Rollins
- Andrew Wang

Agenda

• Motivation
- Highly available services and how to make them happen

• Emergence of Anycast as part of the solution
- What is Anycast and how it is achieved

• Segment Routing in IPv6 and what it can do for us
- Brief introduction and what it can do for us

• Putting all the pieces together
• Demo in Containernet

So we want to provide a highly available service

Client Server A

request

reply

Client Server A

request

Unavailable

So we want to provide a highly available service

Client

Server A

Unavailable

Server B

Map

request

reply

So we want to provide a highly available service

Map

request ➝ resource

reply➝
multiple resource providers
i.e. high availability

So we want to provide a highly available service

Map

resource ➝ FQDN FQDN ➝ multiple IP addresses
10.0.0.1, 10.0.0.2, 10.0.0.3,
10.0.0.4

Client

Layer 7 mapping GTM (via DNS)

So we want to provide a highly available service

Client Map

resource locator ➝ IP
192.168.1.1 Incoming IP ➝

multiple IP addresses
10.0.0.1, 10.0.0.2, 10.0.0.3,
10.0.0.4

Layer 3 mapping
LTM

Local traffic manager: local backend servers

So we want to provide a highly available service

Client

FQDN
Map

FQDN➝
multiple

IP addresses

Layer 7 mapping
GTM

Map192.168.1.1

Incoming IP
➝
multiple
backend
IP addressesLayer 3 mapping

LTM

Map

LTM

Map

LTM

Current common architecture
for highly available services:
GTM (via DNS) + multiple LTMs

192.168.1.2

192.168.1.3

So we want to provide a highly available service

Client

FQDN

Map

FQDN➝ DNS ➝
multiple IP addresses GTM

192.168.1.1

Map

multiple
backend

IP addresses

LTM

Map

LTM

192.168.1.2 Map

LTM

192.168.1.3

GTM provides
geographical
diversity

LTM provides
local
redundancy

So we want to provide a highly available service

• Dependent on client behavior
-Client can cache results indefinitely
-Client may not receive service even though there are servers

available (before cache timeout)
• No inherent leverage of proximity information present in

the network (routing) layer, resulting in loss of
performance
-Client on the west coast can be mapped to LTM on the east

coast
• Inflexible traffic control:
- Local DNS resolver become the unit of traffic management
- eDNS client subnet option can forward client subnets, but

subnet mapping granularity is decided a priori, may face
scalability issues

Issues with the DNS based architecture

• Dependent on client behavior
- One possible solution: results obtained by client are always valid,

e.g. DNS lookup will give one IP address that is always valid, the
service IP

• No inherent leverage of proximity information present in
the network (routing) layer, resulting in loss of
performance
- One possible solution: use the routing layer for packet forwarding,

since it has proximity (“cost”) information

• Inflexible traffic control:
- One possible solution: gateways that intercept packets to the

service IP can direct traffic to the appropriate host (closest, or
policy based)

How could the issues be addressed

Emergence of Anycast as part of the solution

Client

FQDN

Map

FQDN➝ DNS ➝ one IP address

Map

multiple
backend

IP addresses

Map

LTM

Map

LTM
10.0.0.1

10.0.0.1

10.0.0.1

GTM
provides
FQDN ➝ IP

Service
with local
redundancy

Same IP
providing
geographical
diversity

• So, with Anycast the following issues are resolved:
-Dependent on client behavior
-No inherent leverage of proximity information present

in the network (routing) layer, resulting in loss of
performance

• But
-Since much of Internet traffic is over TCP, how would

traffic redirection work with TCP flows in case of
failover and recovery?

Emergence of Anycast as part of the solution

Client

FQDN

Map

FQDN➝ DNS ➝ one IP address

10.0.0.1

Map

multiple
backend

IP addresses

Local
redundancy

Map

LTM

10.0.0.1 Map

LTM

10.0.0.1

Closest local
server not
available

TCP
connection
directed to
another
cluster

Emergence of Anycast as part of the solution

Closest local
server
recovers

Packet
redirected to
closest server
breaks TCP
connection

- Anycast and issues that remain
- Issue: dependent on client behavior
- Issue: no inherent leverage of proximity information present in

the network (routing) layer, resulting in loss of performance

- Issue: inflexible traffic control
- One possible solution: gateways that intercept packets to the

service IP can direct traffic to the appropriate host (closest, or
policy based)

- Issue: TCP connection stability
- One possible solution: the same gateways that intercept

packets to the service IP can handle TCP state so that
recovery of a local server will not break connection

- How can we redirect packets in an IPv6 network?

Emergence of Anycast as part of the solution

• Segment routing header
(SRH) is a type of routing
extension header.
- Routing extension header in

IPv6 is defined in RFC 8200

• Segment routing header
current status: IETF draft -
IPv6 Segment Routing
Header (SRH):
- Segment routing header

contains a list of IPv6
addresses defined at the
source that a packet
traverses on its way to the
destination

Segment Routing in IPv6 and what it can do

S X Y

Z

D

Source
route: set
path SXZD

Only the nodes in the segment list
must support SRv6. Other nodes in
the network do not need to
understand SRH.

Segment Routing in IPv6 and what it can do

Regular
route: SXYD

Client

FQDN

Map

FQDN➝ DNS ➝ one IP address

10.0.0.1
Map

multiple
backend

IP addresses

Local
redundancy

Map

LTM

10.0.0.1 Map

LTM

10.0.0.1

Closest local
server not
available

TCP traffic still sent
to closest cluster,
but forwarded by
gateway to remote
cluster via SRv6

Segment Routing in IPv6 and what it can do

Closest
local server
recovers

Gateway still
sends packets to
remote server via
SRv6, keeps TCP
connection intact

New requests
served locally

Architecture

NDC

OCCAM GATEWAY

Router
ROUTER

HASHER

APP SERVER

AGENT Application

CONTROLLER

BGP/DATA

ECMP
HASHER

HASHER
BGP/DATA

ROUTER

AGENT Application

AGENT Application

Health check/Control data

Client

IPv6 Segment Routing
Client Traffic/BGP route

To remote data center
In kernel (XDP/tc)

Hasher Gateways (“OG Hasher”) that
can do SRv6 will announce
themselves as valid destinations for
the service IP via BGP, they will also
hash incoming requests to a specific
“OG router”

Connection information tracked via
tables kept by the “OG Router”. This
information is shared between a
primary and secondary OG router, to
facilitate recovery in case the primary
node becomes unavailable

Agents are eBPF filters running on
application hosts, they can remove or
add SRv6 headers as needed, and
can send response packets back to
OG router or directly to client (Direct-
Server-Return).

SYN

(2) Hasher picks a router: add segment list and forward to router

SYN
SR

(4) new
connection: track
connection, accept
and reply to OG to
pin connection

SYN/ACK
SR

(5) Remove segment list, forward to client, use service IP as source

(1) Client initiate
connection, send
packet to service IP
(anycast addr)

SYN/
ACK

(6) Client continue
protocol exchange to
service IP, as if talking
to a regular remote
host

ACK

(7) Hasher adds segments, sends to Router, Router checks it’s pinned flow,
update segments, forward to agent handling flow

ACK
SR

TCP 3 way
handshake
exchange

OG: Local Accept

hasher_west hasher_east

(3) Router picks a backend server: update segment and forward to agent

“GET”

(2) Hasher adds segment list, sends to Router

“GET”
SR

(1) Client sends
request to service IP
(anycast addr)

(4) Agent
replies directly
to client, using
service IP as
source addr

“DATA”

Continuing
TCP session

OG: Local Accept

hasher_west hasher_east

(3) Router updates segment list and forward to agent

SYN ACK

(2) new flow, send to OG router but local server unhealthy, forward to remote OG cluster

SYN
SR

(5) OG strips
segment list,
send to client

(3) remote OG has healthy server, accepts connection, forward to agent

(1) Client initiate
connection, send
packet to service IP
(anycast addr)

SYN/ACK

(6) Client continue
protocol exchange to
service IP, as if talking
to a regular remote
host

(4) agent tracks new connection, reply to OG to pin connection; packet is sent back to
forwarding OG to also pin connection

ACK
SR

Remote failover

OG: Remote Failover

X
SYN/ACK
SR

(7) OG adds
segment list,
forwards along the
pinned connection
path

hasher_west hasher_east

(2) OG add segment list and forward to remote OG cluster according to connection table

(1) Client sends
request packet to
service IP (anycast
addr)

(3) agent replies directly to client (DSR), using service IP as source addr

Remote failover

OG: Remote Failover

X

“GET”

“GET”
SR“DATA”

hasher_west hasher_east

• OG nodes can act as gateways to incoming traffic
• Shape traffic based on the needs of backend server
• Create policy profiles for traffic management:
-Example: when incoming traffic to local cluster hits 90% of

cluster capacity, start forwarding traffic to remote cluster
-Failover: cluster capacity dropped to 0, any new incoming

traffic is forwarded to remote cluster

Failover as an instance of policy based traffic
management

• What is containernet?
-Port of Mininet that supports running docker containers as

nodes in a network
-Mininet is a network emulation orchestration system,

running a collection of end-hosts (nodes, links, switches), to
provide an “instant virtual network on your laptop”

-Setup the topology desired, and start traffic sources,
routing software, etc

-Software runs as-is, interacting with real network stack, at
wall clock speed

ØWhen TCP BBR was released as a linux module, it could be
run in Mininet

ØShared resources limited by hardware speed (cannot
emulate link speed faster than supported by underlying
hardware)

• Linux only, Ethernet links

Demo in Containernet

• OG nodes (hasher, router) uses DPDK for fast packet
processing.
-Code written in Rust using the Netbricks framework

• Agent (running in backend servers) implemented via
extended Berkeley Packet Filter (eBPF)
-Code written in C using bcc for code load on XDP for

packet ingress and at tc for packet egress

• Routers in the network run quagga/zebra
• OG nodes run GoBGP to peer with Routers
• Nodes running consul for health check and status
• Nodes post stats to an InfluxDB node, which we can

see on a Grafana dashboard

Demo in Containernet

• Presented a common architecture for highly available
services that addresses issues we have found in a DNS
based system

• How Anycast and SRv6 can together provide a solution
that:
-Provides clients with the closest available server, leveraging

the network layer to provide proximity
-Speed of failover is as fast as detection of downed local

server, i.e., no longer depends on client behavior
-OG traffic forwarding can be policy based and not only for

failover, i.e., we have far greater flexibility in traffic
management

Conclusion

Thank You

