
Traffic
Exceptions
Mat Wood

Network Automation Engineer @ Facebook

Hackathon
Agenda

Schedule

� 9:30 am (now) Introduction & Theme Topic
Group Assembly
Tutorial & Demos

� 10:30 am Break into groups

� 12:30 pm Lunch

� 1:30 pm Resume Groups

� 3:00 pm Break/Refreshments

� 6:00 pm Hack Deadline
Prototype Demos
Voting
Raffle

Group
Assembly

� Pitch ideas to recruit for your group

� Create a group Slack channel
� https://nanoghackathons.slack.com/
� Reach out if you don’t have an account

� Groups wanting to start working early can break off
� Please use Slack channel for comms during the Hack Tutorial

https://nanoghackathons.slack.com/

Hack Time

� Reach out for help with:
� Code & configs
� Tesuto Lab Resources (Including custom labs)
� In Slack Channel

� Work on your idea until 6pm

� Make sure to save time for your presentation!

Prototype
Demos

� 5-10 minute presentation
� What does your Hack do?
� How did you do it?

� Make sure to take screenshots along the way
� Live demos are unpredictable
� Labs will stop being available

Voting
� Crowd vote for favorite Hack

� Winning team(s) to give Prototype Presentation
� Wednesday, 3pm
� Lone Star Salon D-H, Level 3

Raffle
� Prizes will be raffled after Prototype Demos

� Tickets you received at registration

� Must be present to win

Handling
Traffic Exceptions

Traditional
Routing

� Routing is prescriptive of pre-defined desired topology
� Protocols and costs define desired traffic flow
� BGP Policy expresses business logic as reachability
� TE adds constraints to path selection

� Reactive scenarios focus around link failure
� Solving: How to retain connectivity & capacity
� IGP reconvergence of CSPF
� LSP signaled over available capacity
� Try to get back to desired topology

What if we could react to
individual traffic flows?

Handling
Traffic
Exceptions

� Traffic Triggering
� Monitor traffic flows and flag based on desired

characteristics

� Network Config
� Supports the desired outcome of triggered flows
� E.g. Redirect traffic to desired network segments

� Traffic Influence
� Mechanism to connect the triggering to the network

data plane

Wait, this looks familiar...

DDoS
Mitigation

� Traffic Triggering
� Detect attacks from rules/machine learning
� Customer phone call

� Network Config
� BGP with pre-defined policy & communities to drop

traffic

� Traffic Influence
� Remotely-Triggered Black Hole (RTBH)
� BGP FlowSpec

� Remote programming of Drop/Rate-limit for flows

We can do so much more!

Group Assembly

Group Pitch
� Your Name

� Your Project Idea

� What you would like help with

� Slack group channel name

Demo:
Malicious Domains
bit.ly/nanog77-demo-dns

Disclaimer No parts of this demo are representative of
Facebook’s network

Demo

• Inspect DNS responses for malicious
domain name requests (blacklisted)

• Subsequent flows to the resolved host
should be monitored

• Redirect traffic destined towards the
host to the monitoring network segment

Goals

Demo

• The API we already know and love:
• BGP

• ExaBGP as a route injector
• Add HTTP endpoint for remote commands

• Python + Scapy for sniffing and flagging
interesting traffic

Technologies

Analysis Segment

eBGP Routes
API Call: Announce Route

D
N

S
Re

sp
on

se
 fo

r
m

al
ic

io
us

 n
am

e

Traffic Triggering

Traffic
Triggering

• Detect Interesting Traffic
• DNS Responses for blacklisted

domains

• Python + Scapy script is the start of
traffic influence pipeline
• Use existing libraries like Scapy
• Focus on the business logic

Goals

Traffic
Triggering

BAD_QUERIES = set([
"badhacks.com.",
"malicious-mail-order.net.",

])

def analyze(packet: Packet) -> Optional[str]:
""" Check for malicious DNS query/response.

If this is a DNS response for blacklisted
domain, return resolved IP address

"""
if packet.haslayer(DNS):

if not packet[DNS].qr or not packet[DNS].qd:
return # Nothing we’re interested in

if packet[DNS].qd.qname.decode() in BAD_QUERIES:
return packet[DNS].an.rdata

DNS Response Analysis

Traffic
Triggering

def process_packet(packet: Packet) -> Optional[str]:
""" Process the incoming packet """
dest_ip = analyze(packet)
if dest_ip:

trigger_exabgp(dest_ip)

def trigger_exabgp(dst_ip: str):
""" Send announcement to ExaBGP """
command = f"announce route {dst_ip}/128 next-hop self"

params = urlencode({"command": command})
client = HTTPConnection(EXABGP_HOST)
client.request("POST", "/command", params)

scapy.sniff(filter="udp src port 53", prn=process_packet)

Scapy Per-packet Processing

Traffic
Triggering

Analysis Segment

API Call: Announce Route

D
N

S
Re

sp
on

se
 fo

r
m

al
ic

io
us

 n
am

e

Traffic Influence

Traffic
Influence

• Receive detected routes and inject into
BGP

• Redirect traffic destined for the
malicous host

• Use ExaBGP to inject traffic redirects

Goals

Traffic
Influence

HTTP API for ExaBGP

from flask import Flask, request
from sys import stdout

app = Flask(__name__)

Setup a ‘command’ route for prefix advertisements
@app.route("/command", methods=["POST"])
def command():

command = request.form["command"]
Write command to stdout for ExaBGP
stdout.write(f"{command}\n")
stdout.flush()
return f"{command}\n"

if __name__ == "__main__":
app.run(host="3001:2:e10a::10", port=5000)

ExaBGP HTTP API

Traffic
Influence

process http-api {
run /usr/bin/python3 $HOME/http_api.py;
encoder json;

}

Router2
neighbor 3001:2:e10a::2 {

router-id 10.10.10.10;
local-address 3001:2:e10a::10;
local-as 65010;
peer-as 65000;

family {
ipv4 unicast;
ipv6 unicast;

}

announce {
ipv6 { # Test routes

unicast 3001:99:a::/64 next-hop self;
unicast 3001:99:b::/64 next-hop self;

}
}

}

exabgp-conf.ini

Network Config

Network
Config

route-policy exabgp
if source in (3001:2:e10a::10) then
set local-preference 4294967295

endif
pass

end-policy
!
router bgp 65000
neighbor 3001:2:e10a::10
description ExaBGP Peering
remote-as 65010
!
address-family ipv4 unicast
route-policy exabgp in
route-policy exabgp out
next-hop-self
!
address-family ipv6 unicast
route-policy exabgp in
route-policy exabgp out
next-hop-self
!
!
!

Router2 config

Network
Config

router2#show bgp ipv6 unicast summary | b Neighbor
Neighbor Spk AS Up/Down St/PfxRcd
3001:1::1 0 65000 00:56:50 1
3001:2:e10a::10 0 65010 00:00:45 2
3001:3::3 0 65000 00:56:45 0
3001:4::4 0 65000 00:56:34 0

router2#show bgp ipv6 uni | b Network
Network Next Hop LocPrf Weight Path
*>i3001:1:ca9::/64 3001:1::1 0 100 0 i
*> 3001:2:e10a::/64 :: 0 32768 i
*> 3001:99:a::/64 3001:2:e10a::10 0 65010 i
*> 3001:99:b::/64 3001:2:e10a::10 0 65010 i

ExaBGP Peer Verification

Traffic
Triggering

Analysis Segment

API Call: Announce Route

D
N

S
Re

sp
on

se
 fo

r
m

al
ic

io
us

 n
am

e

eBGP Routes

See it in Action

See it in
Action

sniffer$./detect_dns.py traffic.pcap
INFO:root:Detecting DNS queries from traffic.pcap...
WARNING:root:Request for badhacks.com.: 3001:10:66::5
DNS Response with 3001:10:66::5 is a malicious query

router2#show bgp ipv6 uni 3001:10:66::5/128
BGP routing table entry for 3001:10:66::5/128
Versions:
Process bRIB/RIB SendTblVer
Speaker 51 51

Paths: (1 available, best #1)
65010
3001:2:e10a::10 from 3001:2:e10a::10 (10.10.10.10)
Origin IGP, localpref 4294967295, valid, external, best
Received Path ID 0, Local Path ID 1, version 51
Origin-AS validity: (disabled)

Automatic Triggering

See it in
Action

router4> show route protocol bgp 3001:10:66::5

inet6.0: 24 destinations, 24 routes (24 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

3001:10:66::5/128 *[BGP/170] 00:03:40, localpref 4294967295, from 3001:2::2
AS path: 65010 I, validation-state: unverified
> to fe80::9099:ff:fe07:1 via ge-0/0/0.0

router1#show bgp ipv6 uni 3001:10:66::5/128
BGP routing table entry for 3001:10:66::5/128
Versions:
Process bRIB/RIB SendTblVer
Speaker 51 51

Paths: (1 available, best #1)
65010

3001:2:e10a::10 (metric 1) from 3001:2::2 (2.2.2.2)
Origin IGP, localpref 4294967295, valid, internal, bestst
Received Path ID 0, Local Path ID 1, version 51

BGP Advertisement Verification

Shortcomings

� BGP Unicast Routes aren’t granular enough
� /32 and /128 could affect more traffic than we want

� We can’t influence based on source prefix
� Especially not individual traffic flows

Reactive
Network

� Traffic Triggering
� Malicious L7 API requests
� TCP Retransmits, further analysis
� TTL as source-defined priority

� Higher TTL implies “scenic route” 😂

� TCP options encoding of a BGP Community?
� Intent Based Networking™

� Network Config
� Network segment(s) attract traffic via BGP FlowSpec

� Traffic Influence
� ExaBGP provides an API to advertise FlowSpec rules

Flowspec

� RFC 5575

� Flow Specification Rules via BGP
� AFIs: IPv4 & IPv6
� SAFI: 133, 134

� NLRI contains list of Match criteria

� Extended Communities specify the action

� Installed on client/edge devices

Flowspec
Matches

� Dest and/or Source prefix

� IP Protocol

� Dest and/or Source port

� ICMP type/code

� TCP Flags

� Packet Length, DSCP, Fragments

� Operators
� Numeric: ==, >, <
� Boolean: AND, NOT

Flowspec
Actions

� Traffic Rate
� Bytes-per-second (zero == discard)

� Action
� Terminal action (don’t process more rules)
� Sample (for logging purposes)

� Redirect
� Allows for redirection into a VRF

� Traffic Marking
� Apply DSCP value to matching packets

Flowspec
Actions

� Redirect Community
� redirect:6:302

ExtCommunity

0x8008 0x0006 0x0000012e

redirect 2-byte ASN 4-byte ASN

Demo:
TCP Retransmits
bit.ly/nanog77-demo-flowspec

Disclaimer No parts of this demo are representative of
Facebook’s network

Demo

• Inspect flows for high TCP Retransmits

• Traffic Analysis segment with
additional monitoring/troubleshooting
tools

• Redirect interesting flows to the
monitoring network segment

Goals

Demo

• The API we already know and love:
• BGP (now with FlowSpec)

• ExaBGP as a route injector
• Add HTTP endpoint for remote commands

• Python + Scapy for sniffing and flagging
interesting traffic

Technologies

Demo

• N-Tuple Matching
• Src/dst IP, Src/dst port, DSCP, etc

• Match Actions
• Drop/Rate-limit (DDoS mitigation)
• Traffic Marking
• Redirect (next-hop)

• Propagated via BGP
• Communities express the desired action

FlowSpec

Great NANOG Talk: DDoS Mitigation using BGP FlowSpec

https://archive.nanog.org/sites/default/files/tuesday_general_ddos_ryburn_63.16.pdf

Analysis Segment

eBGP: FlowSpec Rules

API Call: Announce Flow

TCP Retra
nsmits

Traffic Triggering

Traffic
Triggering

• Detect Interesting Traffic
• TCP flows with high # of Retransmits

• Python script for easy business logic as
start of traffic influence pipeline
• Use existing libraries like Scapy

Goals

Traffic
Triggering

class FlowKey(NamedTuple):
""" Flow Signature """
src_ip: str
src_port: int
dest_ip: str
dest_port: int

class FlowStatus(object):
""" Flow Object to keep track of retransmits """

def __init__(self) -> None:
self.retransmits = 0
Sequence is Tuple[seq, ack]
self.last_sequence: Tuple(int, int) = (0, 0)

Has been sent to ExaBGP?
self.has_been_triggered = False

TCP Flow Records

Traffic
Triggering

class FlowStatus(object):
...
def analyze(self, packet: Packet) -> int:

""" Detect retransmits

Returns current TCP retransmit count
"""
sequence = (packet[TCP].seq, packet[TCP].ack)
if sequence > self.last_sequence:

self.last_sequence = sequence
else:

self.retransmits += 1

if packet[TCP].flags.F or packet[TCP].flags.R:
raise SessionTerminated()

return self.retransmits

TCP Retransmit Detection

Traffic
Triggering

flows: Dict[FlowKey, FlowStatus] = {}

def process_packet(packet: Packet) -> Optional[str]:
key = FlowKey.from_packet(packet)

if key not in flows:
flows[key] = FlowStatus() # Init a new flow

try:
flow_retransmits = flows[key].analyze(packet)
if flow_retransmits >= RETRANSMIT_THRESHOLD:

if not flows[key].has_been_triggered:
trigger_exabgp(key)

flows[key].has_been_triggered = True
return f"Flow {key!r} has retransmits!"

except SessionTerminated:
del flows[key]

scapy.sniff(filter="tcp", prn=process_packet)

Scapy Per-packet Processing

Traffic
Triggering

Analysis
Segment

API Call: Announce Flow

TCP Retra
nsmits

Traffic Influence

Traffic
Influence

• Receive detected FlowSpec flows
• Allow for redirect ingTCP flows with

high retransmits

• Use ExaBGP to inject FlowSpec flows
for traffic redirection

Goals

Traffic
Influence

HTTP API for ExaBGP

from flask import Flask, request
from sys import stdout

app = Flask(__name__)

Setup a ‘command’ route for prefix advertisements
@app.route("/command", methods=["POST"])
def command():

command = request.form["command"]
Write command to stdout for ExaBGP
stdout.write(f"{command}\n")
stdout.flush()
return f"{command}\n"

if __name__ == "__main__":
app.run(host="3001:2:e10a::10", port=5000)

ExaBGP HTTP API

Traffic
Influence

process http-api {
run /usr/bin/python3 $USER/http_api.py;
encoder json;

}

Router2
neighbor 3001:2:e10a::2 {

router-id 10.10.10.10;
local-address 3001:2:e10a::10;
local-as 65010;
peer-as 65000;

family {
ipv4 unicast;
ipv4 flow;
ipv6 unicast;
ipv6 flow;

}

...

exabgp-conf.ini (part1)

Traffic
Influence

...
announce {

ipv6 {
Test routes
unicast 3001:99:a::/64 next-hop self;
unicast 3001:99:b::/64 next-hop self;

}
}

Test Flows
flow {

route TEST {
match {

source 3001:99:a::10/128;
destination 3001:99:b::10/128;

}
then {

redirect 6:302;
}

}
}

}

exabgp-conf.ini (part2)

Network Config

Network
Config

protocols {
bgp {

group exabgp {
type external;
import [FLOWSPEC EXABGP];
family inet6 {

unicast;
flow {

no-validate FLOWSPEC;
}

}
peer-as 65010;
neighbor 3001:2:e10a::10 {

local-address 3001:2:e10a::2;
}

}
group internal-peers {

family inet6 {
unicast;
flow;

}
...

}
}

}

Router2 config

Network
Config

policy-options {
policy-statement EXABGP {

term 1 {
from neighbor 3001:2:e10a::10;
then { local-preference 4294967295; }

}
term 2 { then accept; }

}
policy-statement FLOWSPEC {

term 1 {
from community TCP-REDIRECT;
then {

next-hop self;
}

}
term 2 {

from community TCP-REDIRECT;
then {

local-preference 4294967295;
accept;

}
}
term 3 { then accept; }

}
community TCP-REDIRECT members redirect:6:302;

}

Router2 config

Network
Config

router2> show bgp summary
...
Peer AS InPkt OutPkt Last Up/Dwn State...
3001:2:e10a::10 65010 38 36 16:27 Establ

inet6.0: 2/2/2/0
inet6flow.0: 0/0/0/0

router2> show route protocol bgp all table inet6

inet6.0: 25 destinations, 25 routes (25 active, 0 holddown, 0
hidden)
+ = Active Route, - = Last Active, * = Both

3001:99:a::/64 *[BGP/170] 00:18:00, localpref 100
AS path: 65010 I, validation-state: unverified
> to 3001:2:e10a::10 via ge-0/0/9.0

3001:99:b::/64 *[BGP/170] 00:17:59, localpref 100
AS path: 65010 I, validation-state: unverified
> to 3001:2:e10a::10 via ge-0/0/9.0

ExaBGP Peer Verification

Network
Config

protocols {
bgp {

group internal-peers {
type internal;
local-address 3001:1::1;
family inet6 {

unicast;
flow {

no-validate FLOWSPEC;
}

}
export CONNECTED;
neighbor 3001:2::2;
neighbor 3001:3::3;
neighbor 3001:4::4;

}
}

}
policy-options {

policy-statement FLOWSPEC {
term 1 {

from community TCP-REDIRECT;
then { next-hop peer-address; }

}
term 2 { then accept; }

}
community TCP-REDIRECT members redirect:6:302;

}

Router1 config

Network
Config

routing-instances {
flowspec-redirect {

instance-type vrf;
interface lo0.302;
route-distinguisher 6:302;
vrf-target target:6:302;
routing-options {

rib flowspec-redirect.inet.0;
rib flowspec-redirect.inet6.0 {

static {
defaults {

resolve;
}
route ::/0 {

next-hop 3001:2::2;
resolve;

}
}

}
resolution {

rib flowspec-redirect.inet6.0 {
resolution-ribs inet6.0;

}
}

}
}

}

Router1 config

Network
Config

flowspec
local-install interface-all
!
router bgp 65000
address-family ipv4 unicast
network 4.4.4.4/32
!
address-family ipv6 unicast
!
address-family ipv6 flowspec
!
session-group internal-peers
remote-as 65000
update-source Loopback0
!
neighbor-group internal-peers
use session-group internal-peers
address-family ipv6 unicast
!
address-family ipv6 flowspec
!
!
neighbor ...
use neighbor-group internal-peers
!
!

Router4 config

Traffic
Triggering

Analysis
Segment

API Call: Announce Flow

TCP Retra
nsmits

eBGP: FlowSpec Rules

See it in Action

See it in
Action

router1> show route table inet6flow.0
router1>

router4#show bgp ipv6 flow
router4#

host1$ traceroute -s 3001:1:a::10 3001:4:b::10
traceroute to 3001:4:b::10 (3001:4:b::10), 30 hops max, 80 byte
packets
1 3001:1:a::1 (3001:1:a::1) 6.959 ms 6.915 ms 6.888 ms
2 3001:13::3 (3001:13::3) 14.177 ms 14.120 ms 14.123 ms
3 3001:34::4 (3001:34::4) 14.091 ms 14.062 ms 14.044 ms
4 3001:4:b::10 (3001:4:b::10) 22.202 ms 22.186 ms 22.169 ms

$ traceroute -s 3001:1:a::20 3001:4:b::10
traceroute to 3001:4:b::10 (3001:4:b::10), 30 hops max, 80 byte
packets
1 3001:1:a::1 (3001:1:a::1) 7.885 ms 7.730 ms 7.756 ms
2 3001:13::3 (3001:13::3) 23.147 ms 23.121 ms 23.099 ms
3 3001:34::4 (3001:34::4) 23.053 ms 22.991 ms 23.010 ms
4 3001:4:b::10 (3001:4:b::10) 22.994 ms 22.963 ms 22.946 ms

Steady State

See it in
Action

sniffer$ curl --form \
"command=announce flow route source 3001:1:a::10/128 \
destination 3001:4:b::10/128 redirect 6:302" \
http://[3001:2:e10a::10]:5000/command

router1> show route table inet6flow.0

inet6flow.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

3001:1:a::10/128,3001:4:b::10/128/term:1
*[BGP/170] 00:38:34, localpref 65000

AS path: 65010 I, validation-state: unverified
> to 3001:2::2

router4#show bgp ipv6 flow | b Network
Network Next Hop Metric LocPrf Weight Path

* i Dest:3001:4:B::10/0-128,Source:3001:1:A::10/0-128
3001:2::2 65000 0 65010 i

Traffic Redirection

See it in
Action

host1$ traceroute -s 3001:1:a::10 3001:4:b::10
traceroute to 3001:4:b::10 (3001:4:b::10), 30 hops max, 80 byte
packets
1 3001:1:a::1 (3001:1:a::1) 2.321 ms 2.241 ms 2.208 ms
2 3001:12::2 (3001:12::2) 9.576 ms 9.544 ms 9.499 ms
3 3001:24::4 (3001:24::4) 21.666 ms 21.637 ms 21.618 ms
4 * 3001:4:b::10 (3001:4:b::10) 21.559 ms 21.502 ms

host1$ traceroute -s 3001:1:a::20 3001:4:b::10
traceroute to 3001:4:b::10 (3001:4:b::10), 30 hops max, 80 byte
packets
1 3001:1:a::1 (3001:1:a::1) 7.527 ms 7.399 ms 7.399 ms
2 3001:13::3 (3001:13::3) 14.992 ms 14.953 ms 14.955 ms
3 3001:34::4 (3001:34::4) 30.839 ms 30.804 ms 30.805 ms
4 3001:4:b::10 (3001:4:b::10) 22.710 ms 22.618 ms 22.583 ms

Traffic Redirection

🥳

See it in
Action

sniffer$./detect_retransmits.py host_retransmit.pcap
INFO:root:Detecting retransmits from host_retransmit.pcap...
reading from file host_retransmit.pcap, link-type EN10MB (Ethernet)
DEBUG:root:Sending command to ExaBGP: announce flow route source
3001:4:b::10/128 destination 3001:1:a::10/128 redirect 6:302

DEBUG:root:Sending command to ExaBGP: announce flow route source
3001:1:a::10/128 destination 3001:4:b::10/128 redirect 6:302

Flow 3001:4:b::10:443 <--> 3001:1:a::10:58719 has 5 retransmits!
Flow 3001:4:b::10:443 <--> 3001:1:a::10:58719 has 5 retransmits!
Flow 3001:4:b::10:443 <--> 3001:1:a::10:58719 has 5 retransmits!
Flow 3001:4:b::10:443 <--> 3001:1:a::10:58719 has 5 retransmits!
Flow 3001:4:b::10:443 <--> 3001:1:a::10:58719 has 5 retransmits!
DEBUG:root:Flow ended: 3001:4:b::10:443 <--> 3001:1:a::10:58719
DEBUG:root:Flow ended: 3001:1:a::10:58719 <--> 3001:4:b::10:443
DEBUG:root:Flow ended: 3001:1:a::10:58719 <--> 3001:4:b::10:443

Automatic Triggering

See it in
Action

router2> show route protocol bgp table inet6flow.0

inet6flow.0: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

3001:1:a::10/128,3001:4:b::10/128/term:1
*[BGP/170] 00:06:12, localpref 65000, from 3001:2:e10a::10

AS path: 65010 I, validation-state: unverified
Receive

3001:4:b::10/128,3001:1:a::10/128/term:2
*[BGP/170] 00:06:12, localpref 65000, from 3001:2:e10a::10

AS path: 65010 I, validation-state: unverified
Receive

router1> show route table inet6flow.0

inet6flow.0: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

3001:1:a::10/128,3001:4:b::10/128/term:1
*[BGP/170] 00:07:28, localpref 65000

AS path: 65010 I, validation-state: unverified
> to 3001:2::2

3001:4:b::10/128,3001:1:a::10/128/term:2
*[BGP/170] 00:07:28, localpref 65000

AS path: 65010 I, validation-state: unverified
> to 3001:2::2

Automatic Triggering

See it in
Action

router1> show firewall filter __flowspec_default_inet6__

Filter: __flowspec_default_inet6__
Counters:
Name Bytes Packets
3001:1:a::10/128,3001:4:b::10/128 15872 124
3001:4:b::10/128,3001:1:a::10/128 2000 25

FlowSpec Rule Verification

Demos
are Hard

During the creation of this demo I found the following
issues:

� Juniper vMX:
� Flowspec exclude interface support (link) not supported
� Even with MPLS label!
� This should work in hardware (not in the lab demo)

� Cisco IOS-XR:
� Flowspec redirect also not supported in ASR-9000v

https://apps.juniper.net/feature-explorer/feature-info.html?fKey=7074&fn=Exclude%20interfaces%20support%20in%20flowspec%20(rpd-infra)

Now it’s your turn

Hackathon

Feel free to:

� Hack on your own ideas

� Expand on the demos
� Files available at: bit.ly/nanog77-demo

� Hackathon helpers are available for help with:
� Coding, configs, & lab resources

� Reminder to work on your Demo Presentation
� Take screenshots along the way!

