
Traffic
Exceptions
Mat Wood

Network Automation Engineer @ Facebook

Traditional
Routing

� Routing is prescriptive of pre-defined desired topology
� Protocols and costs define desired traffic flow
� BGP Policy expresses business logic as reachability
� TE adds constraints to path selection

� Reactive scenarios focus around link failure
� Solving: How to retain connectivity & capacity
� IGP reconvergence of CSPF
� LSP signaled over available capacity
� Try to get back to desired topology

What if we could react to
individual traffic flows?

Handling
Traffic
Exceptions

� Traffic Triggering
� Monitor traffic flows and flag based on desired

characteristics

� Network Config
� Supports the desired outcome of triggered flows
� E.g. Redirect traffic to desired network segments

� Traffic Influence
� Mechanism to connect the triggering to the network

data plane

Wait, this looks familiar...

DDoS
Mitigation

� Traffic Triggering
� Detect attacks from rules/machine learning
� Customer phone call

� Network Config
� BGP with pre-defined policy & communities to drop

traffic

� Traffic Influence
� Remotely-Triggered Black Hole (RTBH)
� BGP FlowSpec

� Remote programming of Drop/Rate-limit for flows

We can do so much more!

Reactive
Network

� Traffic Triggering
� Malicious L7 API requests
� TCP Retransmits, further analysis
� TTL as source-defined priority

� Higher TTL implies “scenic route” 😂

� TCP options encoding of a BGP Community?
� Intent Based Networking™

� Network Config
� Network segment(s) attract traffic via BGP FlowSpec

� Traffic Influence
� ExaBGP provides an API to advertise FlowSpec rules

CUBUFFS

• Akshay Broota

• Parth Adroja

• Sadhvi Ravishankar

• Sahana Satyanarayana

• Tavleen Kaur

Key Points
Exception Traffic

• ExaBGP
• DSCP values
• Traffic shaping

Failover

• Route
manipulation

Monitoring

• Twilio API
• Freshdesk

Visualization

• Grafana
• Matplotlib

WORKFLOW

Capture

Topology

.py

.py

Update

ExaBGP

Secure API Netmiko

Inject

Advertise

Route
Propagation

with
DSCP Marking

Router 1 Router 2

Traffic
Exception

Normal
Traffic

“Marked” Exception
Traffic

Normal Traffic

VISUALIZATION:
MATPLOTLIB

Visualization: Grafana

REPORT
FAILURE:

FRESHDESK

REPORT
FAILURE:

TWILIO

• Scalability

• Scale the solution to a higher number of nodes

• Scale for multiple exceptions

• Applications

• IDS, IPS, Blackholing

Future Scope

• Tools – tcpdump, Scapy, Python, ExaBGP, Netmiko, REST, Grafana, Twilio

API, Freshdesk

• Power of Network Programmability

• Planning

• Team work

• Time Management

• Don’t give up! Have Fun!!

Takeaway

THANK YOU!

NANOG-77
Hackathon

Building a FlowSpec
Management System

Topology

Overview

●

●

●

●

Demo: Initial Routing State

Demo: Run Sniffer

Demo: Slack Notifications

Demo: Announce Redirect: UI

Demo: Announce Redirect: Button Output

flow added to neighbor 3001:2:e10a::2 local-ip 3001:2:e10a::10 local-as 65010 peer-as

65000 router-id 10.10.10.10 family-allowed in-open : flow destination-ipv6

3001:1:a::10/128/0 source-ipv6 3001:4:b::10/128/0 extended-community redirect:6:302

flow added to neighbor 3001:2:e10a::2 local-ip 3001:2:e10a::10 local-as 65010 peer-as

65000 router-id 10.10.10.10 family-allowed in-open : flow destination-ipv6

3001:4:b::10/128/0 source-ipv6 3001:1:a::10/128/0 extended-community redirect:6:302

Demo: Announce Redirect: ExaBGP Output

Demo: Announce Redirect: Route Update - Router1

Demo: Announce Redirect: Route Update - Router2

Demo: Withdraw Redirect: UI

Demo: Withdraw Redirect: Button Output

Demo: Withdraw Redirect: ExaBGP Output

flow removed from neighbor 3001:2:e10a::2 local-ip 3001:2:e10a::10 local-as 65010

peer-as 65000 router-id 10.10.10.10 family-allowed in-open : flow destination-ipv6

3001:1:a::10/128/0 source-ipv6 3001:4:b::10/128/0 extended-community redirect:6:302

flow removed from neighbor 3001:2:e10a::2 local-ip 3001:2:e10a::10 local-as 65010

peer-as 65000 router-id 10.10.10.10 family-allowed in-open : flow destination-ipv6

3001:4:b::10/128/0 source-ipv6 3001:1:a::10/128/0 extended-community redirect:6:302

Demo: Withdraw Redirect: Route Update

How We Did It

Future Enhancements

redirect 6:302

Thanks!

Path Tracers

Colin Mclntosh

Kyle Birkeland

Soham Shah

Evan Alexandre

Nishit Bavishi

Understanding the problem
Current Tooling

Traceroute has issues

when faced with lots of

ECMP

Better Traffic Flow

Analyze the flow and

detect link state

Take decisions based on

IGP, BGP and physical

link state

Re-analyze the need to

drain if needed

Harness and deploy

★ Detect

★ Analyze

★ Configure

★ Influence

AND

Repeat !!

(Run it as a service)

Context
Building a better Traceroute

Client Implications:

● Ability to investigate routes that

include ECMP

Influence Link State

React to interface metrics (flapping, errors)

Client Implications:

● Automatically respond to route traffic

around problematic link

Product Overview
● NAPALM (Network Automation and Programmability Abstraction)

○ Widely adaptable and scalable

● Paris traceroute

○ Interesting take on path checks

● Facebook fbtracert

Our Traceroute Implementation
First Attempt

● We chose to use paris-traceroute with UDP for our method of analyzing different paths

● We initially began building an implementation of UDP traceroute in Golang with the

intent to build the paris-traceroute feature on top

● Discovered https://github.com/facebook/fbtracert which provides an existing paris-

traceroute implementation for TCP along with some helpful command-line utilities

https://github.com/facebook/fbtracert

Our Traceroute Implementation (cont)
Second Attempt

● After analyzing the existing fbtracert code we found a lot of similarities

○ Golang and the organization of goroutines

○ Logic to test various TTLs

● We also found things we didn't like

○ Lack of UDP or ICMP traceroute

○ Output was unclear and lacking useful data

○ Some bugs in the timing of traceroutes

○ Built as a command-line utility rather than a library

● With this we decided to expand on a fork of fbtracert to keep what we liked, add what

we wanted, and planned to push the changes upstream.

Traceroute Implementation Results
● We were able to convert the fbtracert code from a command-line tool to a Golang

library that is importable and usable by other code.

● We were able to improve the command-line output to be more clear and include

additional metadata.

● We were able to build our implementation of UDP traceroute into fbtracert, however we

were unable to finish integrating this into the analysis component of the script (good

opportunity for a future hackathon!)

Results
Old: New:

Traffic Influencer via Path Probing

Identify Traffic
Paths

Combine health-check
service with Sniffer
service

Identify the available
traffic paths using
custom traceroute
implementation

Influence and Act

Use a simplistic
approach to further
drain the link from
production traffic via
IGP metric cost

Identify rogue link

Run health-check
service to identify link
state
(flaps/errors/utilization
and more)

03

01 02

Traffic Flows

Flaps

Results

Identifying the threshold for flapping, then reacting

Results

Results

Learnings
● We all learned what paris-traceroute is (except Kyle)

● Different flavours of traceroute

● Traffic Implementations and Flows

Challenges
● Socket programming for traceroute

● Time (as always a complaint)

Conclusion
● Fetching requisite data from the testbed to take decisions

● Identifying paths using custom traceroute and influence

traffic decisions

● Implemented Basic Route Dampening in IGP

Code: https://github.com/kbirkeland/nanog77-hackathon/

	1500_1_Hackathon Recap
	1500_2_Team7_cubuffs_hackathon_final
	1500_3_hackathon_pod1
	1500_4_NANOG-77 Hack - Pod 9 - Colins Team

