Traffic

Exceptions

Mat Wood

Network Automation Engineer @ Facebook

Traditional
Routing

* Routing is prescriptive of pre-defined desired topology

* Protocols and costs define desired traffic flow
- BGP Policy expresses business logic as reachability
* TE adds constraints to path selection

- Reactive scenarios focus around link failure

* Solving: How to retain connectivity & capacity
* IGP reconvergence of CSPF

* LSP signaled over available capacity

* Try to get back to desired topology

What if we could react to
individual traffic flows?

- Traffic Triggering

* Monitor traffic flows and flag based on desired
characteristics

Handling
Traffic
Exceptions

* Network Config
* Supports the desired outcome of triggered flows

* E.g. Redirect traffic to desired network segments

* Traffic Influence

* Mechanism to connect the triggering to the network
data plane

Wait, this looks familiar...

- Traffic Triggering
* Detect attacks from rules/machine learning

* Customer phone call

DDo5 * Network Config

Mitigation * BGP with pre-defined policy & communities to drop
traffic

- Traffic Influence
* Remotely-Triggered Black Hole (RTBH)

* BGP FlowSpec

- Remote programming of Drop/Rate-limit for flows

We can do so much more!

Reactive
Network

- Traffic Triggering

* Malicious L7 API requests

* TCP Retransmits, further analysis

* TTL as source-defined priority
* Higher TTL implies “scenic route”

* TCP options encoding of a BGP Community?
* Intent Based Networking™

* Network Config

* Network segment(s) attract traffic via BGP FlowSpec

* Traffic Influence

 ExaBGP provides an API to advertise FlowSpec rules

Key Points

‘def freshdesk():

fromaddr='ccncer’s email
toaddrs="support@parthadroija. freshdesk.com”

o

msg=

server=smtplib.SMTP("'smtp.gmail.com:587")
server.starttls()

username=-ccnccer s eman
password="p-cuord
server.login(username,password)

server.sendmail (fromaddr,toaddrs,msg)
server.quit()

def function_tw(source):
#SID and Token for authentication on Twilio API
account_sid = #1110 510
auth_token = #1110 authentication
client = Client(account_sid, auth_token)

message_info=("Detected too many HTTP traffic from host {}. Please check.".format(source))
#Defining message body

message = client.messages.create(

» i ’ ’ ‘body=message_info,

i from_= #twilig number

ito= #network administrator number

D)

call = client.calls.create(
i i i ' url= #recorded voice message to be played on call
from_= #Lwilio number

to= #network administrator number

H H H H H)
print(“Notifying Network Administrator™)

NANOG-77

Hackathon

POD-1

Topology

Overview

Expanded on the demo flowspec system with the following:
e Send retransmit data to an API
e Alert Slack if retransmits exceed the threshold
e Offer front-end for viewing status

e Offer means to manually announce and withdraw redirects

Demo: Initial Routing State

Demo: Run Sniffer

Demo: Slack Notifications

Demo: Announce Redirect; Ul

Demo: Announce Redirect: Button Output

Demo: Announce Redirect: ExaBGP Output

flow added to neighbor 3001:2:el0a::2 local-ip 3001:2:e10a::10 local-as 65010 peer-as
65000 router-id 10.10.10.10 family-allowed in-open : flow destination-ipv6
3001:1:a::10/128/0 source-ipv6 3001:4:b::10/128/0 extended-community redirect:6:302

flow added to neighbor 3001:2:el0a::2 local-ip 3001:2:e10a::10 local-as 65010 peer-as

65000 router-id 10.10.10.10 family-allowed in-open : flow destination-ipv6

3001:4:b::10/128/0 source-ipv6 3001:1:a::10/128/0 extended-community redirect:6:302

Demo: Announce Redirect: Route Update - Routerl

Demo: Announce Redirect: Route Update - Router2

Demo: Withdraw Redirect; Ul

Demo: Withdraw Redirect: Button Output

Demo: Withdraw Redirect: ExaBGP Output

flow removed from neighbor 3001:2:el0a::2 local-ip 3001:2:e10a::10 local-as 65010
peer-as 65000 router-id 10.10.10.10 family-allowed in-open : flow destination-ipvé6
3001:1:a::10/128/0 source-ipv6 3001:4:b::10/128/0 extended-community redirect:6:302

flow removed from neighbor 3001:2:el0a::2 local-ip 3001:2:e10a::10 local-as 65010

peer—-as 65000 router-id 10.10.10.10 family-allowed in-open : flow destination-ipvé6

3001:4:b::10/128/0 source-ipv6 3001:1:a::10/128/0 extended-community redirect:6:302

Demo: Withdraw Redirect: Route Update

How We Did It

detect_retransmits.py
- Swapped call to ExaBGP APl with a POST to a Slack Webhook when the retransmit threshold is exceeded
- Onevery packet process, send updated retransmit data for the applicable flow
- ExaBGP API
- Added /status endpoint that stores retransmit data received from the Sniffer in Redis
- Added /redirect and /withdraw endpoints to execute announcing and withdrawing the BGP redirect
- ExaBGP Frontend
- Added a frontend for the API that exposes the status data received from the Sniffer and offers buttons for
executing the redirect and withdraw endpoints using only HTML and CSS
- ExaBGP Process
- Separated the API from the exabgp process wrapper and proxied it with uWSGI to make the APl and frontend
available via port 80
Used named pipes as the communication layer between the uWSGI process and the ExaBGP process

Future Enhancements

JavaScript to implement sorting and filtering the status table

- Form input to specify the ExaBGP action instead of hardcoding to
redirect 6:302

- Poll routing data from the routers and expose on the Ul to view the
effects of the ExaBGP commands live on the network

Detect other traffic anomalies in addition to retransmits

Zoe Blevins
David Testa
Tony Franklin

Kyle Bean

Path Tracers

Colin Mclntosh

Kyle Birkeland
Soham Shah
Evan Alexandre
Nishit Bavishi

Understanding the problem

Current Tooling Better Traffic Flow Harness and deploy

Traceroute has issues Analyze the flow and Detect
when faced with lots of detect link state Analyze

ECMP Configure
Take decisions based on

IGP, BGP and physical
link state AND

Influence

Re-analyze the need to Repeat !!

drain if needed
(Run it as a service)

Context

Building a better Traceroute

Client Implications:

e Ability to investigate routes that
include ECMP

Influence Link State

React to interface metrics (flapping, errors)

Client Implications:
e Automatically respond to route traffic
around problematic link

Product Overview

e NAPALM (Network Automation and Programmability Abstraction)
o Widely adaptable and scalable

e Paris traceroute

o Interesting take on path checks

e Facebook fbtracert

Our Traceroute Implementation

First Attempt

We chose to use paris-traceroute with UDP for our method of analyzing different paths
We initially began building an implementation of UDP traceroute in Golang with the
intent to build the paris-traceroute feature on top

Discovered https://github.com/facebook/fbtracert which provides an existing paris-
traceroute implementation for TCP along with some helpful command-line utilities

https://github.com/facebook/fbtracert

Our Traceroute Implementation (cont)

Second Attempt

e After analyzing the existing fbtracert code we found a lot of similarities
o Golang and the organization of goroutines
o Logic to test various TTLs
e We also found things we didn't like
Lack of UDP or ICMP traceroute
Output was unclear and lacking useful data
Some bugs in the timing of traceroutes
Built as a command-line utility rather than a library
e With this we decided to expand on a fork of fbtracert to keep what we liked, add what
we wanted, and planned to push the changes upstream.

Traceroute Implementation Results

e We were able to convert the fbtracert code from a command-line tool to a Golang
library that is importable and usable by other code.
We were able to improve the command-line output to be more clear and include
additional metadata.
We were able to build our implementation of UDP traceroute into fbtracert, however we
were unable to finish integrating this into the analysis component of the script (good
opportunity for a future hackathon!)

Results

Traffic Influencer via Path Probing

Influence and Act

Identify Traffic Use a Sirr??“?tict X
Paths approach to further

drain the link from
production traffic via

Combine health-check IGP metric cost

service with Sniffer
service

Identify the available Identify rogue link

traffic paths using
custom traceroute
implementation

Run health-check
service to identify link
state
(flaps/errors/utilization
and more)

Traffic Flows

Results

Identifying the threshold for flapping, then reacting

Results

Results

Learnings

e We all learned what paris-traceroute is (except Kyle)
e Different flavours of traceroute
e Traffic Implementations and Flows

Challenges

e Socket programming for traceroute

e Time (as always a complaint)

Conclusion

e Fetching requisite data from the testbed to take decisions

e Identifying paths using custom traceroute and influence
traffic decisions

e Implemented Basic Route Dampening in IGP

Code: https://github.com/kbirkeland/nanog77-hackathon/

	1500_1_Hackathon Recap
	1500_2_Team7_cubuffs_hackathon_final
	1500_3_hackathon_pod1
	1500_4_NANOG-77 Hack - Pod 9 - Colins Team

